

BU 0000 - en

NORDCON

Manual

Read documentation and keep for future reference

Read the documentation carefully prior to commissioning the software described therein. Always observe the instructions in this documentation. They serve as the prerequisite for smooth and safe operation and the fulfilment of any warranty claims.

Contact Getriebebau NORD GmbH & Co. KG if your questions regarding the handling of the product are not answered in this document or if you require further information.

The German version of this document is the original document. The German document is always decisive. If this document is available in other languages, these will be translations of the original document.

Keep this document so that it is available if required.

Publisher

Getriebebau NORD GmbH & Co. KG

Getriebebau-Nord-Straße 1 • 22941 Bargteheide, Germany • http://www.nord.com Fon +49 (0) 45 32 / 289-0 • Fax +49 (0) 45 32 / 289-2253

Member of the NORD DRIVESYSTEMS Group

Copyright notice

As an integral component of the product described here, this document must be provided to all users in a suitable form.

Any editing or amendment or other utilisation of the document is prohibited.

Product identification

The document describes the following product:

Designation: NORDCON

[BU 0000]

Any content described in this document is based on the following software version:

Version: 3.0.0.929

08-2024

1 Information

Later versions may vary.

In case you use a later version of the software described above, contents and illustrations in this document may vary from the original software.

Table of Contents

1	Gener	General					
	1.1	About NORDCON	9				
2	First s	First steps in NORDCON					
	2.1	Installation of NORDCON					
	2.2	Connection to the frequency inverter	10				
•	lloori	interface.	40				
3	User I	Mein menu	12 12				
	3.1	3 1 1 "File" menu item					
		3.1.2 "Start" menu item					
		3.1.3 "Device" menu item					
		3.1.4 "Project" menu item	18				
		3.1.5 "Messages" menu item					
		3.1.6 "View menu item	19 21				
	3.2	Work groas	21 22				
	5.2	3.2.1 Individual window positioning	22 22				
		3.2.2 Window: Devices report	24				
		3.2.3 Window: Frequency inverter remote control	25				
4	Conne	nection settings					
-	4 1	Interface selection	26				
	4.2	Connection via serial interface	20 27				
	4.3	Connection via Ethernet	29				
_	-						
5	Param	meterisation					
	5.1	Parameter overview					
	5.2	Parameter transfer to device					
	5.3	Farameter transfer to device					
	5.4	Euli parameters					
	5.5	Off line Parameterisation					
	5.6	Off-line Parameterisation					
	5.7	Comparison report	35				
	5.8	Reset password or satety password					
6	Contr	trol	38				
	6.1	Control overview					
	6.2	Standard control					
	6.3 De 6.3 6.3 6.4 6.4 6.4 6.4 6.4 6.4	Detailed control	40				
		6.3.1 Overview	40				
		6.3.2 Control	40				
		6.3.4 Formatting of Setpoint and actual values	41 12				
		6.3.5 Status word					
		6.3.6 Control word	44				
7	Remo	ote control	45				
•	7 1	Standard					
	7.2	NORDAC SK 200 F					
	7.3	NORDAC SK 700/500/300 E					
	7.0	NORDAU SK / UU/SUU/SUU E					
	7.5	NORDAC vector ct	49 50				
_							
8	Oscill	lloscope	52				
	8.1	Overview	52				
	8.2	Display	52				
	8.3	Handling	53				
	8.4 Measurement						
	8.5	Save and Print	56				

DRIVESYSTEMS

9	Macro editor5			
	9.1	User interfaces and views	57	
		9.1.1 Window "Variables"	57	
		9.1.2 Properties window	5/	
	0.2	9.1.5 Log wildow	00	
	9.2	Q 2 1 Create a new macro	00	
		9.2.7 Open a macro	61	
		9.2.3 Save a macro	61	
		9.2.4 Inserting instructions	61	
		9.2.5 Copying instructions	61	
		9.2.6 Cutting instructions	61	
		9.2.7 Delete from instruction	01	
		929 Shift up instruction	01	
		9.2.10 Shift down instruction	62	
		9.2.11 Creating new instructions	62	
	9.3	Scheduler	63	
		9.3.1 Start sequence	63	
		9.3.2 Cancel a macro	63	
		9.3.3 Execute next instruction	03	
10	USS F	rame-Editor	64	
	10.1	Master (order)	66	
	10.2	Device (response)	67	
11	PLC (Programmable Logic Controller)	69	
	11.1	General	69	
		11.1.1 Specification of the PLC	70	
		11.1.2 PLC structure	71	
		11.1.2.1 Memory	71	
		11.1.2.2 Process Image	71	
		11.1.2.3 Flografi lask 11.1.2.4 Setpoint processing	72	
		11.1.2.5 Data processing via accumulator	72	
		11.1.3 Functional scope	73	
		11.1.3.1 Motion Control Lib	73	
		11.1.3.2 Electronic gear unit with flying saw	73	
		11.1.3.3 Visualisation	73	
		11.1.3.5 CANopen communication	74	
	11 2	Creation of PLC programs	74	
	11.2	11.2.1 Loading, saving & printing	74	
		11.2.2 Editor	74	
		11.2.2.1 Variables and FB declaration	75	
		11.2.2.2 Input window	76	
		11.2.2.3 Watch and Breakpoint display window	76	
		11.2.3 Transfer PLC program to device	77	
		11.2.4 Debugging	78	
		11.2.4.1 Observation points (Watchpoints)	78	
		11.2.4.2 Holding points (Breakpoints)	78	
		11.2.4.3 Single Step	78	
	44.0	TI.2.5 PLC conliguration	79	
	11.3	FUNCTION DIOCKS	79 	
		11.3.1 Overview	80	
		11.3.1.2 FB NMT	80	
		11.3.1.3 FB_PDOConfig	81	
		11.3.1.4 FB_PDOReceive	84	
		11.3.1.5 FB_PDOSend	86	
		11.3.2 Electronic gear unit with flying saw	88	
		11.3.2.2 FB FlvingSaw	89	
		11.3.2.3 FB Gearing	90	
		11.3.3 Motion Control	91	
		11.3.3.1 MC_Control	92	

	mandal	
	11.3.3.2 MC_Control_MS	95
	11.3.3.3 MC_Home	96
	11.3.3.4 MC_Home (SK 5xxP)	97
	11.3.3.5 MC_MOVEADSOIUTE	99
	11.3.3.0 MC_MoveRelative	101
	11.3.3.7 MC_MoveRelative	102
	11.2.2.0 MC_MOVEVEICUUY	103
	11.3.3.9 MC_PoodActualPoc	104
	11.3.3.10 MC_ReadParameter	100
	11.3.3.12 MC ReadStatus	100
	11.3.3.13 MC Reset	107
	11.3.3.14 MC Stop	109
	11.3.3.15 MC WriteParameter 16 / MC WriteParameter 32	100
	11.3.4 Standard	
	11.3.4.1 CTD downward counter	111
	11.3.4.2 CTU upward counter	112
	11.3.4.3 CTUD upward and downward counter	113
	11.3.4.4 R TRIG and F TRIG	114
	11.3.4.5 RS Flip Flop	115
	11.3.4.6 SR Flip Flop	116
	11.3.4.7 TOF switch-off delay	116
	11.3.4.8 TON switch-on delay	117
	11.3.4.9 TP time pulse	118
	11.3.5 Access to memory areas of the frequency inverter	119
	11.3.5.1 FB_ReadTrace	119
	11.3.5.2 FB_WriteTrace	120
	11.3.6 Visualisation with ParameterBox	
	11.3.6.1 Overview visualisation	122
		123
	11.3.0.3 FB_STRINGTOPBUX	125
	11.3.7 FB_Capture (Detection of rapid events)	۱۷۲ ۱۷۲
	11.2.0 FD_DITCOUTLET	128
	11.3.9 FB_FUICIONCUIVE	
	11.3.10 FD_FIDTT	132 13/
	11.3.12 FB Weigh	
11.4	Operators	
	11.4.1 Arithmetical operators	
	11.4.1.1 ABS	136
	11.4.1.2 ADD and ADD(136
	11.4.1.3 DIV and DIV(137
	11.4.1.4 LIMIT	138
	11.4.1.5 MAX	138
	11.4.1.6 MIN	139
	11.4.1.7 MOD and MOD(139
	11.4.1.8 MUL and MUL(140
	11.4.1.9 MUX	140
	11.4.1.10 SUB and SUB(141
	11.4.2 Extended mathematical operators	
	11.4.2.1 CUS, ACUS, SIN, ASIN, TAN, ATAN	141
	11.4.2.2 EXP	142
	11.4.2.3 LN	143
	11.4.2.4 LUG	143
	11.4.2.0 SQRT	144
	11.4.3 Did operators	144 1//
	11.4.3.2 ANDN and ANDN/	145
	11 4.3 3 NOT	140
	11 4.3 4 OR and OR(146
	11.4.3.5 ORN and ORN(147
	11.4.3.6 ROL	148
	11.4.3.7 ROR	148
	11.4.3.8 S and R	149
	11.4.3.9 SHL	149
	11.4.3.10 SHR	150
	11.4.3.11 XOR and XOR(150
	11.4.3.12 XORN and XORN(151

		11.4.4 Loading and storage operators (AWL)	152
		11.4.4.1LD	152
		11.4.4.2 LDN	152
		11.4.4.3 ST	152
		11.4.4 STN	153
		11.4.5 Comparison operators	
		11.4.5.1 EQ	153
		11.4.3.2 GE 11.4.5.3 GT	104
		11 4 5 4 I F	155
		11.4.5.5 LT	155
		11.4.5.6 NE	156
	11.5	Processing values	156
		11.5.1 Inputs and outputs	
		11.5.2 PLC setpoint and actual values	
		11.5.3 Bus setpoints and actual values	170
		11.5.4 ControlBox and ParameterBox	175
		11.5.5 Information parameters	175
		11.5.6 PLC errors	
		11.5.7 PLC parameters	
	11.6	Languages	
		11.6.1 Instruction list (AWL / IL)	
		11.6.1.1 General	182
		11.6.2 Structured text (ST)	185
		11.6.2.1 COMMON	100
	11 7	lumna	107
	11.7	11 7 1 IMD	
		11.7.1 JMF	
		11.7.3 JMPCN	
	11.8		192
	11.0	11.8.1 BOOL TO BYTE	192
		11.8.2 BYTE TO BOOL	
		11.8.3 BYTE TO INT	
		11.8.4 DINT_TO_INT	
		11.8.5 INT_TO_BYTE	193
		11.8.6 INT_TO_DINT	194
	11.9	PLC Error messages	194
12	Proie	ct Mode	
	12.1	General	196
	12.1	HMI	107
	12.2	Film	
	12.3		
13	Proje	ect Download	199
14	Firmv	ware	
	14.1	Serial interface	200
		14.1.1 How to update the firmware.	
		14.1.2 Firmware update program	
		14.1.3 Firmware update via system bus	205
		14.1.4 How to update the firmware (NORDAC PRO)	208
	14.2	Ethernet interface	210
		14.2.1 How to update the firmware	211
15	Sattir	ngs	214
15	15 1	Lloor interface	
	10.1		
	15.2		
	15.3	Control	218
	15.4	Project	219
	15.5	Directories	220
	15.6	Macro editor	221
	15.7	Parameter	222
	15.8	PLC	
16	Mass	2005	222
10	141622	หมุระจ	

NORDCON – Manual

16.1	Errors and information	.223
16.2	Abbreviations	.233

1 General

1.1 About NORDCON

NORDCON is an application for the parametrisation and control of frequency inverters and bus modules from Getriebebau NORD.

With NORDCON, up to 31 frequency inverters can be addressed simultaneously via the integrated RS485 interface. The communication with the frequency inverters takes place via the serial interface of the computer.

For test runs or commissioning, the connected frequency inverters can be controlled via the PC. Meanwhile, the current frequency inverter status can be monitored. Macros allow for the generation of full process workflows.

NORDCON allows for the generation, documentation and saving of the frequency inverter's parameter settings. For this purpose, the frequency inverter can read or receive all parameter settings. Offline – that is without a connected frequency inverter – parameter databases can be created or edited.

Furthermore, the connected frequency inverters can be controlled remotely. With a remotely controlled frequency inverter, the respective control unit is simulated on the computer. This allows for the control of devices, which are difficult to access or which do not have a control unit.

2 First steps in NORDCON

2.1 Installation of NORDCON

There are two ways of installing the NORDCON software: via the installation program from the enclosed CD or via online download. Use the following link to download the software online:

"http://www.nord.com/cms/de/documentation/software/software-overview.jsp"

- 1. Start the installation program from the enclosed CD or double-click the file downloaded online.
- 2. Follow the instruction of the setup wizard and enter all data required for the installation.
- 3. Complete the installation and start the program by double-clicking on the desktop icon.

1 Information

Default folder for the installation

It is recommended to install the application in the proposed default folder. The installation in an individually selected folder is also possible but may lead to complications afterwards.

2.2 Connection to the frequency inverter

1 Information

Advanced configuration of the communication module

Certain cases require specific configurations on the communication module to establish the connection between the frequency inverter and the NORDCON software. For further information, observe Chapter 4 "Connection settings".

The connection to the frequency inverter requires a serial 1:1 cable. If the frequency inverter has an RS232 interface (optional), also known as COM port, it can be directly connected to the computer. With this type of connection, only one frequency inverter can be connected at a time.

Each NORD Frequency inverter has an integrated RS485 interface, available on the control terminals. Use the RS485 interface to establish a master/slave bus connection for up to 31 devices. The connection of NORDCON to this bus requires an RS232-to-RS485 converter.

- 1. Insert the connection cable into the respective frequency inverter port. Refer to the frequency inverter documentation for the type of connection.
- 2. If necessary, connect all required adapter cables. Also note the information given on the adaptation according to the frequency inverter you are using.
- 3. After all cables have been correctly connected, establish the connection to your computer.

4. Start application

Continue with starting the application. Double-click the desktop icon or execute the program via the navigation menu.

5. Configure communication module

In the application's navigation, click "Start" and the "Communication" button. The "Parametrize – Serial USS" window opens.

Tree				^
Туре	USS over serial interfa	ce		
Name	Serial USS			
Port	COM1		*	

Figure 1: Window: "Parametrize – Serial USS"

- 6. In the "Port" input field on the "Common" tab, enter the correct port number of your connected frequency inverter. If the port number was changed, confirm the change by clicking the "Apply" button at the bottom right of the window. If required, go to the "Scan" and "Advanced options" tabs to set further interface parameters.
- 7. Scan and connect

After having set the port correctly, perform a bus scan to find the frequency inverter. For this purpose, select the "Start" menu item and click the "Device search" button. The bus scan now searches for all connected and operationally ready devices. All devices found are displayed in the project tree and in the device overview. The first device in the list is then selected and ready for use.

8. Use device

In the device overview or in the project tree, a device can be selected by clicking on it. Use the context menu in the project tree or the respective entries in the navigation menu to access functions such as control or parameterisation.

i Information

Consider the configuration of serial addresses

When operating several devices, make sure that all connected devices have different serial addresses assigned. Also make sure that the same baud rate is set for all devices. For this purpose, read the documentation for the respective frequency inverter.

3 User interface

The application window consists of the main menu (Figure 2/1), the toolbar (Figure 2/2), also referred to as ribbon, and the work area (Figure 2/3). The work area takes up the major part of the screen and consists of different views. The work area displays the different editor windows such as parameter windows or macros.

Figure 2: User interface

- 1. Main menu
- 2. Toolbar (ribbon)
- 3. Work areas

In the work area, windows can be freely positioned. To change the position of a window, click on its title bar and keep the mouse button pressed. Use the mouse pointer to drag the window to the new position.

If the window is required to be displayed within the entire work area, keep the mouse button pressed and navigate the window to the centre of the work area above the folder symbol. A coloured rectangle shows the window's current position. Above the folder symbol in the centre, the rectangle marks the entire work area. After releasing the mouse button, the action will be completed and the window will be positioned. The layout will be saved when closing the application, and will be restored during restart.

3.1 Main menu

The main menu is the central entry point for most of the application's functions. It displays the most important functions, subdivided by categories.

1 Information

Different presentation

The contents in this document are based on software version 3.0.0.929. The presentation, designation and location of menu items of later software versions may differ.

NORDCON (1)New D New Data set C Open Data se PLC + Convert 4 ST program Create new progra (5) AWL program Create new progra Macro Create new macro 6 (8 (9) A Save (10)(11) Figure 3: "File" menu item 1. Close menu 7. Create new STL/SWL program 2. New 8. Create new macro 3. Open 9. Save 4. Convert 10. Save as 5. Print Export 11. 6. Create new data set

3.1.1 "File" menu item

Clicking on the "File" menu item hides the complete interface. The submenu items of the "File" menu item are displayed on the left side of the screen. Clicking one submenu item displays its options in the main window. The table below details an overview of the available functions.

NORDCON – Manual

Function		Description
New	Data set	The function opens the parameter window for a new device. Beforehand, the required device must be selected in the displayed dialogue.
	PLC	The function offers the selection between the following options:
		"Structured text" (ST)
		"Instruction List" (IL, AWL)
		After the selection of an option, the configuration window opens. Upon completion of the configuration, the PLC editor opens with an empty document.
	Macro	The function opens the macro editor in the main window.
		Note:
		In the current version, only one macro editor can be opened at a time.
Open	Browse	Click the function to open the file selection window. In the file structure, navigate to a saved document to open it.
		Use the file filter at the right bottom of the file selection window to select the required document type. The following file types are supported:
		• Parameter files (* ndby * db (\/1 27))
		Oscilloscope files (* scox * sco (V1 27))
		 Macro (*.ncmx, *.ncm (V1.27))
		• PLC files (*.awlx, *.awl, *.nstx)
Convert		With this function, existing parameter sets can be converted to be used with other devices.
Print		Use this function to print out the contents of the current editor window. Beforehand, set the printing options in the configuration window. [Key combination: Ctrl+P]
		Note:
		Depending on the editor type, there are different functions available. If no editor window is open or if the editor does not support the action, the function will be deactivated in the menu.
Save		The function saves the current document state by overwriting the existing file in the current file location.
		Note:
		If the "Save As" function has not been used before, the first use of this function will open the file selection window in which the file location can be set.

Function	Description
Save as	This function always opens the file selection window. Use this function to save the current document states in a new file location or with another file name.
Export	This function exports the data of the active editor window to a different file format.

i Information

Deactivated menu item

A menu item is deactivated if no editor window is open or if the editor does not support the action.

3.1.2 "Start" menu item

Figure 4: "Start" menu item

1.	Device search	7.	Remove
2.	Connect/Disconnect	8.	Select all
3.	Communication settings	9.	Up/Down
4.	Paste	10.	Add
5.	Сору	11.	Standard
6.	Cut	12.	Import

Clicking on the "Start" menu item opens the menu in the ribbon below. The ribbon contains the related submenu items. The table below details an overview of the available functions.

Function	Description
Device search	Using the "Device search" function performs a bus scan. It only works upon selection of the correct connection interface. [Keyboard shortcut: CTRL+F5]
	Note:
	Use the "Communication settings" item in the ribbon to configure the interface.
Connect/ Disconnect	Depending on the state of the current application connection, the button name changes from "Connect" to "Disconnect". If the device is not actively connected, clicking "Connect" establishes the connection. If the device is actively connected, clicking the "Disconnect" button disables the connection. [Keyboard shortcut: F2]
Communication	This function is used to configure the interface to the device. Clicking the "Communication settings" button opens the parameterisation window containing the possible settings for the establishment of a communication connection to the device.

Function	Description
Paste	This function copies the contents from the clipboard to the selected position.
	Note:
	If the current control element does not support the action or if the contents from the Windows clipboard cannot be pasted, the item will be deactivated.
Сору	This function copies the selected object to the clipboard. [Keyboard shortcut: CTRL+C]
Cut	This function removes the selected object from its current position and copies it to the clipboard. Use the "Paste" function afterwards to avoid losing the cut object.
Remove	This function removes the selected object from its current position. [Keyboard shortcut: CTRL+DEL]
Select all	This function selects all the objects of an active element. This functions is usually followed by "Copy", "Cut" or "Remove".
Up	This function moves the selected object up by one position. [Keyboard shortcut: CTRL+U]
Down	This function moves the selected object down by one position. [Keyboard shortcut: CTRL+D]
Add	This function inserts a new element into the dashboard.
Standard	This function resets the settings of the dashboard element to the standard settings.
Import	This function imports the configuration settings for the dashboard previously saved locally.

1 Information

Deactivated menu item

A menu item is deactivated if no editor window is open or if the editor does not support the action.

3.1.3 "Device" menu item

Figure 5: "Device" menu item

- 1. Control
- 2. Remote Control
- 3. Parametrize
- 4. Oscilloscope
- 5. PLC

- 6. Parameter transfer from device
- 7. Parameter transfer to device
- 8. PLC program transfer to device
- 9. Select motor

Clicking on the "Device" menu item opens the menu in the ribbon below. The ribbon contains the related submenu items. The table below details an overview of the available functions.

Name of action	Description
Control	This menu item opens the Control window of the selected device in the work area. If the window is already open, it will be moved to the foreground. [Keyboard shortcut: F6]
Remote Control	This menu item opens the Remote Control window of the selected device in the "Control and View" view. If the window is already open, it will be moved to the foreground. [Keyboard shortcut: F8]
Parametrize	This menu item opens the Parameter window of the selected device in the work area. If the window is already open, it will be moved to the foreground. [Keyboard shortcut: F7]
Oscilloscope	This menu item opens the Oscilloscope window of the selected device in the work area. If the window is already open, it will be moved to the foreground.
PLC	This menu item opens the PLC window of the selected device in the work area. If the window is already open, it will be moved to the foreground.
Parameter transfer from device	This menu item starts the parameter upload from the device to the PC. [Keyboard shortcut: F3]
Parameter transfer to device	This menu item starts the parameter download from the PC to the device. [Keyboard shortcut: F4]
PLC program transfer to device	This menu item transfers a saved PLC program to the selected device.
Select motor	The function allows for the import of motor data from an external source. If the user selected a motor parameter file (*.csv) in the file selection dialogue, all motors contained will be listed. A data set is selected in the list and confirmed with "OK". Afterwards, the parameters will be transferred to the selected device. If the parameter window is open, the values will be imported to the parameter window and will not be transferred to the device. The parameter transfer must be done separately.

1 Information

Deactivated menu item

A menu item is deactivated if no editor window is open or if the editor does not support the action.

3.1.4 "Project" menu item

Figure 6: "Project" menu item

- 1. Send all from file ...
- 2. Save all to file ...

Clicking the "Project" menu item opens the menu in the ribbon below. The ribbon contains the related submenu items. The table below details an overview of the available functions.

Function	Description
Send all from file	This function opens a file and sends the saved parameters to the devices.
Save all to file	This function loads the parameters of all devices found and saves them to a file.

1 Information

Deactivated menu item

A menu item is deactivated if no editor window is open or if the editor does not support the action.

3.1.5 "Messages" menu item

Figure 7: "Messages" menu item

- 1. Delete messages
- 2. Save/export messages
- 3. Show/hide error messages
- 4. Show/hide warnings
- 5. Show/hide information

- 6. Show/hide messages of the "System" category
- 7. Show/hide messages of the "Communication" category
- 8. Show/hide messages of the "PLC" category
- 9. Show/hide messages of the "Macro" category
- 10. Show/hide messages of the "Parameter" category

Clicking the "Messages" menu item opens the menu in the ribbon below. The ribbon contains the related submenu items. The table below details an overview of the available functions.

Function	Description
Delete	Using the "Delete" function deletes all entries in the message window.
Save as	Using the "Save as" function exports the entries in the message window and locally saves them on the user's computer.

Function	Description
"Error" filter	Using the "Error" filter function shows/hides all error messages in the message window.
"Warning" filter	Using the "Warning" filter function shows/hides all warning messages in the message window.
"Information" filter	Using the "Information" filter function shows/hides all messages of the "Information" category in the message window.
"System" filter	Using the "System" filter function shows/hides all messages of the "System" category in the message window.
"Communication" filter	Using the "Communication" filter function shows/hides all the messages of the "Communication" category in the message window.
"PLC" filter	Using the "PLC" filter function shows/hides all the messages of the "PLC" category in the message window.
"Macro" filter	Using the "Macro" filter function shows/hides all the messages of the "Macro" category in the message window.
"Parameter" filter	Using the "Parameter" filter function shows/hides all the messages of the "Parameter" category in the message window.

(i) Information

Deactivated menu item

A menu item is deactivated if no editor window is open or if the editor does not support the action.

3.1.6 "View" menu item

Figure 8: "View" menu item

- 1. "Layout" menu item
- 2. "Extras" menu item

- 4. Show/hide "Messages" window
- 5. Show/hide "Remote control" window
- 3. Show/hide "Devices report" window

Clicking the "View" menu item opens the menu in the ribbon below. The ribbon contains the related submenu items. The table below details an overview of the available functions.

Function	Description
Layout	The "Layout" item can be used to adjust the window layout within the application.
Extras	The "Extras" item can be used to show and hide additional windows and layouts within the application.

NORDCON – Manual

Function	Description
Devices report	The "Devices report" item can be used to show and hide the "Devices report" window.
Messages	The "Messages" item can be used to show and hide the message window within the application.
Remote Control	The "Remote Control" item can be used to show and hide the window for the remote control of frequency inverters.

Fehler! Verweisquelle konnte nicht gefunden werden. "Fehler! Verweisquelle konnte nicht gefunden werden." Fehler! Verweisquelle konnte nicht gefunden werden. "Fehler! Verweisquelle konnte nicht gefunden werden."

i Information

Deactivated menu item

A menu item is deactivated if no editor window is open or if the editor does not support the action.

3.1.7 "Help" menu item

Clicking the small question mark in the top right of the ribbon opens the help menu in a pop-up window. The help menu describes parameters, functions and properties of the NORDCON software.

Figure 9: Help

- 1. "Content" tab
- 2. "Index" tab
- 3. "Search" tab

- 4. Navigation menu of the NORDCON help
- 5. Contents window
- 6. "Help" button

Name of action	Description
"Content" tab	The "Content" tab contains the contents of the online help in a pre-defined sequence. Clicking the respective menu items shows them in the contents window on the right.
"Index" tab	In the "Index" tab, all contents of the online help can be browsed by entering a search term (key term). The list below displays the search results matching the search term. Clicking an entry in the list shows its contents in the contents window on the right.
"Search" tab	Similar to the "Index" tab, in the "Search" tab, the contents of the online help can by browsed by entering a search term (key term). The search, however, refers to "subject areas". The list below displays the search results. Clicking an entry in the list shows its contents in the contents window on the right.

i Information

Deactivated menu item

A menu item is deactivated if no editor window is open or if the editor does not support the action.

3.2 Work areas

Work areas are the areas, which show software content elements and which are used for the application of the functions. The work areas contain different elements, for example the frequency inverter control or the display of device properties.

3.2.1 Individual window positioning

In the work area, windows can be undocked from their current position and positioned individually. The windows can then be positioned at the borders, in a central main location or freely on the screen. The coloured rectangle indicates the respective target position.

To re-position a window, keep the left mouse button pressed and undock the window from its original position. While keeping the mouse button pressed, move the mouse and choose the new position. To re-position the window, release the left mouse button on the required position.

Figure 10: Individual window positioning

- 1. Re-position window at the border
- 2. Preview of the new position (blue frame)
- 3. Position menu

Different docking rules apply to different window types. The following list specifies the relevant rules for docking the individual windows:

Window type	Docking rule
Main window view (e.g. project, error log, Control and View)	The main window views can only be docked to the left, right or bottom of the work area. No rules apply within these windows and the user can freely choose the position.
Editor window (e.g. macro editor, parameter window, oscilloscope)	The editor window can only dock in the work area. The alignment, however, is set to bottom, top or tab.
Macro window views	The macro editor views can only dock to the macro editor. The alignment is set to left, right or bottom. No rules have been defined within the views.
Oscilloscope views	In undocked state, the window can be freely positioned. To position the window in filling mode in the work area, drag it to the centre of the position menu while keeping the mouse button pressed and release the mouse button.
"Remote Control" window	The "Remote Control" windows can only dock to the "Control and View" window. The alignment is set to left.

NORDCON - Manual

3.2.2 Window: Devices report

The devices report is used for general status information and is located by default in the main window. It provides an overview of the frequency inverter's actual values. Apart from the current frequency and the current voltage in the form of a tachometer, it shows the actual current and the status overview.

					() Q			3	4
Ŀ	9			1	IORDCON			1 X -	- ×
File	Star	t Device Project	Messages View	v					\$ ® ()
0	8	? 📟	(1)	Remove	Jp + (♪ ₽			
Device	Disco	nnect Communication	Paste Copy C	rt	Down Add Sta	ndard Impor	t		
2001011		Start		Edit	Det	hboard			~
			OC Devices rep	ort					×
=== ((00] 20	xE 550W/230V/1							
			[00]	20xE 550W	//230V/1				
			Aktuel	e Frequenz	Aktuelle So	arnung		Aktueller Strom	
				20					
				20 10 60		1			
			40	80	1	0			
			60	100		V		Statuswort	
				-80 0,0 120		v		Einschaltbereit	
				Hz				00400	
			() Messages						₽ ×
			Importance	Timestamp	Place	Category	D	Message	
J↑	đ	8							

Figure 11: Devices report

- 1. Frequency display in the form of a tachometer
- 2. Display of current voltage
- 3. Display of actual current
- 4. Status display of frequency inverter

3.2.3 Window: Frequency inverter remote control

By default, the "Remote" window is located at the bottom of the work area. The window can be docked and undocked in the work area, and re-positioned at the preferred position. If the user closed the window, it can be shown again via the "Device" menu item.

Figure 12: Frequency inverter remote control

After the frequency inverter is connected to and recognised by the system correctly, it can be controlled remotely. There is no need of operation on the device. All the required settings can be made via the software.

1 Information

Observe the "Remote control" chapter

For further information on the remote control of the frequency inverter, read Chapter 6, "Remote control".

4 Connection settings

The establishment of a connection between a computer and a frequency inverter may require different configurations of the communication module. The connection via serial interface is pre-configured by default. Alternatively, a connection is also possible via Ethernet. Use the "Start" menu item and the "Communication" submenu item to make settings to the communication module.

4.1 Interface selection

Figure 13: Selection of interface for communication

- 1. Open the context menu via right click
- 2. "Type of communication" menu item
- 3. "Communication" menu item
- 4. Available interfaces

To specify whether the connection to the inverter will be established via serial interface or via Ethernet interface, perform the following steps:

- 1. Right-click on the blue surface on the left side of the window (Figure 13/1) to access the context menu.
- 2. Hover over the "Type of communication" menu item (Figure 13/2) with the mouse.
 - \Rightarrow The submenu containing the available interfaces opens.
- 3. Select the required interface (Figure 13/4) and apply the setting by clicking on the menu item.
- 4. When the required interface is correctly selected, click the "Communication" menu item (Figure 13/3) to open the configuration window.

4.2 Connection via serial interface

The configuration window for the serial interface comprises the following tabs, which must be configured for proper functionality.

Gr Parametri	ze - Serial USS — 🛛	X Parametrize - Serial USS	- () ×	Gr Parametrize - Serial USS	-	□ ×
Type Name Port	USS over serial interface Serial USS COMS <usb ftdi="" port="" serial=""> *</usb>	Baud rate 36400 Execute bus scan with all bas Starting baud rate 38400 Start address 0 End address 20 Rerations 1 1 1	- Baud ud rates Baud	Common Scan Advanced options	Telegram error 10 0 Bus error 10 0 Stop all found devices Smulate hardware Automatic search at program start		volimor dage
	Standard Restore Ap	ly Standard	Restore	Apply	Standard	Restore	Apply

Figure 14: Configuration window for serial connection

"Common" tab

Name

In this input field, assign a name for the communication module.

Port

In this selection field, specify the COM ports of the PC to which the frequency inverter is connected.

"Scan" tab

• Baud

In this selection field, the user specifies the transfer speed of the serial interface. The value must also be set on the frequency inverter. During operation with several frequency inverters, all devices must have the same value. Baud rates of more than 115200 bit/s are user-specific baud rates that are not supported by all devices.

1 Information

Connection problems

•

Sometimes, older serial PC interfaces are not capable of setting the exact user-specific baud rate. This is why no connection can be established to the device.

Execute bus scan with all baud rates With this option, the user enables or disables the bus scan with different baud rates. If the device's baud rate is unknown, a scan across all baud rates can search for a device.

• Starting baud rate

In this selection field, specify the baud rate with which a bus scan will start.

• Start address

In this input field, specify the USS address from which NORDCON searches for connected

rate

frequency inverters. No connection is established to frequency inverters, which have a smaller address parametrised.

• End address

In this input field, specify the USS address up to which NORDCON searches for connected frequency inverters. No connection is established to frequency inverters, which have a large address parametrised.

• Execute bus scan with all baud rates

With this option, the user enables or disables the bus scan with different baud rates. If the device's baud rate is unknown, a scan across all baud rates can search for a device.

"Advanced options" tab

• Telegram error

In this input field, specify the number of permissible telegram errors. Telegram errors occur if the telegram's content is not correct, meaning that the response does not correspond to the parameter request. Usually a response is given after 2 telegrams for each request. The number of permissible telegram errors specifies how many attempts are permitted before an error message is displayed.

Bus error

In this input field, specify the number of permissible bus errors. A bus error occurs if the receipt or transmission telegram was faulty. The impaired telegrams are discarded. Here, the number of permissible incorrect telegrams for which an error message is generated can be set. The error tolerance should be set to an appropriately higher value for environments in which there is interference.

• Stop all found devices

If this option is enabled, the "Disable" command is sent to each of the detected devices after the device search. The device is stopped if it can be controlled via the bus (parameter P509).

- Automatic search at program start This option enables or disables the automatic device search after program start.
- Simulate hardware

This option enables or disables the simulation of a connected hardware.

1 Information

Save and Restore

All changes only become effective after pressing the "Apply" button. The current settings can be restored using the "Restore" button.

4.3 Connection via Ethernet

The configuration window for the Ethernet interface comprises the following tabs, which must be configured for proper functionality.

Parametrize	e - Ethernet	- 🗆 X	Or Parametrize - Ethernet	-	D X
Type Name Varient	Ethernet Ethernet Profiliet	Commee Scan	Activate scan Start address 1122_100_20_100 End addres Reope Stat 1	a 192 188 20 1	200 South
Stop all fou Automatic 1	ind devices search al program start		Search for 1st D extension Search for 2st D extension		
			Name Value		
	Standard	Restore Apply	Standard	Restore	Apply

Figure 15: Configuration window for Ethernet connection

"Common" tab

Name

In this input field, the user can assign a name for the communication module.

Variant

In this selection field, specify the type (ProfiNet, EthernetIP or EtherCAT) of communication.

• Stop all found devices If this option is enabled, the "Disable" command is sent to each of the detected devices after the device search. The device is stopped if it can be controlled via the bus (P509).

• Automatic search at program start

This option enables or disables the automatic search after program start. If this option is enabled, a device search is started automatically when NORDCON is started.

"Scan" tab

Activate scan

The option defines whether the device search is enabled. If the search is enabled, all IP addresses from the start address to the end address are searched for devices. If the search is disabled, the following configuration is used in a bus scan.

- Start
 address
 In this input field, specify the start address for the device search.
- End

address

In this input field, specify the end address for the device search.

Add bus module

Use the button to add a new bus module to the device list.

Add device

Use the button to add a new device to the device list.

Delete

Use the button to remove the selected item from the device list.

• Value - Bus module (IP address):

In this column, enter the IP address of the connected bus module.

• Value - Device:

In this column, enter the slot of the device (see following table).

Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6	Slot 7	Slot 8
System bus address 32 or SK 5xxE via TU3	System bus address 34	System bus address 36	System bus address 38	System bus address 40	System bus address 42	System bus address 44	System bus address 46

• Additional - Device

In this column, enter the configuration of the IO extensions.

Bus module	Slot 1	Slot 2	Slot 3	Slot 4	Slots 5–8
SK TU3-EIP V1.2 SK TU3-PNT V1.2	SK 5xxE	Not available	Not available	Not available	Not available
SK TU3-PNT V1.4 SK TU3-EIP V1.4	SK 5xxE	SK 5xxP SK 5xxE SK 2xxE SK 19xE SK 1xxE			
SK CU4-EIP V1.2 SK TU4-EIP V1.2 SK CU4-PNT V1.2 SK TU4-PNT V1.2	SK 5xxE SK 2xxE SK 19xE SK 1xxE	SK 5xxE SK 2xxE SK 19xE SK 1xxE	SK 5xxE SK 2xxE SK 19xE SK 1xxE	SK 5xxE SK 2xxE SK 19xE SK 1xxE	Not available
Not available	SK 55xP	SK 5xxP SK 5xxE SK 2xxE SK 19xE SK 1xxE	SK 5xxP SK 5xxE SK 2xxE SK 19xE SK 1xxE	SK 5xxP SK 5xxE SK 2xxE SK 19xE SK 1xxE	Not available
Not available	SK 3xxP	Not available	Not available	Not available	Not available

1 Information

Access rights

Please note that you need access rights for parameterisation and control via the bus module. Please check the operating instructions for the bus module used.

i Information

Device search

Please make sure you enter an address range for the device search that only includes NORD devices. Otherwise, problems may occur during the device search.

4 Connection settings

i Information

Save and Restore

All changes only become effective after pressing the "Apply" button. The current settings can be restored using the "Restore" button.

5 Parameterisation

Parameterisation is used to optimally adjust the frequency inverter to the motor and its intended application. The parameters can be read and changed via the NORDCON software as well as via a separate plug-in control module.

With NORDCON, all parameters can be imported, saved and transferred back to the frequency inverter after editing. Furthermore, parameters can be printed for documentation purposes.

5.1 Parameter overview

The "Parametrize" menu item opens the parameter overview. Here, all parameters are listed in tabs – sorted by parameter number (e.g. P1XX). Clicking the respective tab (reference image/3) displays the respective parameter group in the list (reference image/1). Clicking the respective parameter in the adjacent window (reference image/4) shows the parameter description and the parameter properties.

5.2 Parameter transfer from device

The "Parameter transfer from device" function downloads all parameters from the device to the computer. Clicking the respective menu item starts the transfer. The current status of the data transfer is displayed in a pop-up window. Following the data transfer, a dialogue window opens. This allows to save the values in a local file on the computer.

1 Information

Communication error

If communication errors occur during the transfer, these are displayed in the message window at the bottom of the screen. The transfer is cancelled and must be restarted.

5.3 Parameter transfer to device

The "Parameter transfer to device" function sends all parameters from the computer to the device. Clicking the respective menu item opens a dialogue window prompting the selection of the required parameter file. Clicking the "Open" button performs a short check whether the selected parameter file matches the connected device. If this is the case, the parameter transfer starts automatically. A status display shows the current status of the data transfer.

1 Information

Communication error

If communication errors occur during the transfer, these are displayed in the message window at the bottom of the screen. The transfer is cancelled and must be restarted.

1 Information

Observe correct parameter data

Parameters are saved in an .nsbx file and can only be sent to the device from this file.

5.4 Edit parameters

The parameters of a frequency inverter are managed in databases. These databases can be stored, printed or post-edited. All actions can be executed via the main menu (Parametrize). The most important actions can also be executed via the buttons in the window.

i Information

"Parametrize" menu item

The "Parametrize" menu item is only displayed after a parameter window has been selected.

NORDCON provides the following actions for editing parameters:

NORDCON - Manual

Action	Location	Description
New	File -> New -> Dataset	The current database is reinitialised, meaning that the current and the new settings will be deleted.
Open	File -> Open	A saved database can be opened.
Save	File -> Save	The current database is saved with the current name.
Save as	File -> Save as	The current database is saved with a new name.
Print preview	File -> Print preview	The current parameter settings are printed.
Read all parameters or Read all	Parameterise -> Read -> All Parameters	All parameters of the frequency inverter are read and entered in the database.
Read actual menu group	Parameterise -> Read -> Actual menu group	The parameters of the selected menu group are read and entered in the database.
Send new settings	Parameterise -> Send -> New Values	All parameters for which a new value was entered in the "New settings" field are transmitted to the frequency inverter. A selection is possible as to whether this operation is to be performed on all parameters or only on those belonging to the current menu group.
Send Factory settings	Parameterise -> Send -> Reset values	The default settings of all parameters or of the parameters of the current menu group are transmitted.
Selection Enable	Parameterise -> Selection - > Release	All parameters (or the current menu group) are enabled
Selection Disable	Parameterise -> Selection - > No Release	None of the parameters (or the current menu group) is enabled
Standard	"Standard" button	The default value is assigned to the currently selected parameter.
Send	"Send" button	The "New settings" value of the currently selected parameter is transferred.
Read	"Read" button	The selected parameter is read and the value is transferred to the "Current Setting" field.

With the Auto Read option, the selected parameter is read automatically.

5.5 Selective parameterisation

NORDCON allows for masking some parameters or other, a feature which may facilitate manipulation or serve the purpose of restricting parameter readout or transmission to those which remain unmasked, or in other words have been filtered out.

i Information

When a filter has been activated, all operations are executed only on those parameters which are displayed.

Before any parameter can be masked the enable command must be inactivated. This can be done using the checkbox preceding the parameter, or via the 5.4 "Edit parameters" menu.

The Filter box provides for the setting options mentioned below:

- Selection only Only the enabled parameters are displayed (i.e. where the check box preceding the parameter was clicked once).
- No standard Only the parameters with a value that is different from the standard setting are displayed.
- Info parameters
 - **Yes** Information parameters are displayed.
 - No Information parameters are not displayed.
- **Only** Information parameters are displayed exclusively.

5.6 Off-line Parameterisation

Off-line parameterisation implies that a database is manipulated which is not allocated to any frequency inverter connected.

Off-line parameterisation is started via the database menu in the main window.

Name	Description
New	A new database can be created. The new database is allocated to a frequency inverter type which is set using a selection box.
Open	Any database that was read into memory can be opened and manipulated.

5.7 Comparison report

The report shows the differences and similarities between two data records in a window. Basically, only data records in one device family can be compared. The parameters are shown in the form of a list. If two parameters differ, the line is marked with a grey bar. It is also checked whether a value differs from the standard value. If this is the case, the value is displayed in red.

i Information

Save dataset

After the report has been generated, the data record can no longer be saved! For this reason, it is advisable to save the data record beforehand.

Online / Offline comparison

A device with NORDCON must be connected in order to perform the comparison. The parameter window for the device must then be opened, and it is advisable to read out all parameters. The parameter selection can be restricted even further using the filters. A report can then be generated using the "Parameter Setup -> Comparison" menu item. After calling up the function, the user must select a stored data record for the comparison. If the parameters which are read out are going to be used as a back-up, the user must subsequently save the current data record. The report is then generated and displayed.

1 Information

The configuration of the open parameter set is used as the reference for the parameters and the standard values. If a data record that does not correspond with the configuration of the device is selected, any parameters that are not present are shown empty and marked as different.

Offline / Offline comparison

A saved or new data record must be opened in order to perform the comparison. The parameter selection can be restricted even further using the filters. Then a report can be generated using the "Parameter Setup -> Comparison" menu item. After calling up the function, the user must select a stored data record for the comparison. The report is then generated and displayed.

i Information

The configuration of the open parameter set is used as the reference for the parameters and the standard values. If a data record that does not correspond with the configuration of the device is selected, any parameters that are not present are shown empty and marked as different.

5.8 Reset password or safety password

Perform the following steps:

- 1. Start NORDCON.
- 2. Carry out a device search.
- 3. Select the required device in the project tree. Afterwards, start the function "Reset password" or "Reset safety password" via the context menu that opens via a right click.

4. Before the password can be reset, a warning will be displayed. Carefully read the warning information and confirm with the "I accept" button.

5. Please enter the device's serial number in the input field. Confirm afterwards with the "Reset" button.

After the reset, the window will close automatically and the result will be displayed in the message window.

If the safety password was reset, the device will afterwards be in an error state. The user has to set the safety parameter again and write the Safety CRC into the device. The device needs to the restarted afterwards.

6 Control

6.1 Control overview

NORDCON allows to control NORD Frequency inverter. To use this function, the device must be parametrised accordingly. As the configuration may differ between devices, the user must use the information from the device's operating instructions. Before controlling the device, the user must perform a bus scan. After the scan, all connected frequency inverters are displayed in the main window. Afterwards, the user can select the required device by left-clicking. The "Control" window can now be opened via the main menu item "Device -> Control" (F6) or via the pop-up menu (right click).

1. "Control" menu item

After opening, the control configuration of the device is read in and evaluated using the default setting ("Settings -> Control -> Control configuration check" selected). If the "Control" is restricted or impossible, the user gets a warning.

In the "Control" window, the user is provided with two variants:

- 6.2 "Standard control" The frequency inverter can be enabled and the setpoint can be increased or decreased. Phase sequence reversal and fault acknowledgement are also possible.
- 6.3.1 "Overview" With this window, all control options can be used.

6.2 Standard control

The standard control provides the user with the following functions:

- Enable device
- Increase or decrease setpoint
- Phase sequence reversal
- Fault acknowledgement

Before these functions are available, the device must be configured for control via bus. The respective parameters and values can be found in the operating Instructions of the relevant frequency inverter.

Figure 18: Standard control

1.	"Enable" button	7.	Bar display: Actual value
2.	"Disable" button	8.	"Decrease setpoint" button
3.	Setpoint display	9.	"Detail" button
4.	Actual value display	10.	"Acknowledge" button
5.	"Increase setpoint" button	11.	"Change of direction" button
6.	Bar display: Setpoint		

The standard view displays the first setpoint and actual value. The formatting of the values is fixed for each configuration. Clicking the "Detail" button switches to the advanced control.

6.3 Detailed control

6.3.1 Overview

The detailed control provides the following advanced functions:

- 6.3.2 "Control"
- 6.3.3 "Management of setpoints and actual values"
- Sending of broadcast telegrams
- Setting of different parameter sets
- · Automatic sending of control word and setpoints

Control	Process datas	
Control word Status word 047E ··· 0931 ···	Set point frequency	Actual frequency 0,0
P1 P- Set	Off	Torque current
Auto Send Broadcast	Off 0%	Error code
NORDAC	Send Up	date Standard

Figure 19: Detailed control view

6.3.2 Control

The control word is displayed as a hexadecimal value in the "Control word" input field. The user can change the control word by entering a new (hexadecimal) value. For a bit-coded input, click the "Edit control word" button to open another edit window. This window displays the control word in bits.

The status word is displayed as a hexadecimal value in the "Status word" view. For a bit-coded display of the control word, click the "Bit-orientated detail view" button. The state is also displayed in plain text in the status line according to the frequency inverter status machine.

Figure 20: Functions of the advanced control

1.	Name of function: "Setpoint 1"	5.	Button: "Formatting Setpoint 1"
2.	Name of function: "Actual value 1"	6.	Input field: "Setpoint 1"
3.	Button: "Formatting Actual value 1"	7.	Button: Update (read in values anew)
4.	Display: "Formatting Actual value 1"	8.	Button: Generate standard view

6.3.3 Management of setpoints and actual values

To control the device, the user can define up to three setpoints and actual values (see device description). The setpoints or actual values are displayed according to the formatting ("Formatting Setpoint x" button). The input of the setpoints is expected to take place in the same format.

In addition, the "Settings -> Control -> Parameter set individual management" option allows for the separate management of the setpoints and actual values. This means that the setpoints for any parameter set can be specified. When activating the parameter set, these values are sent to the device. This is required as different setpoints or actual values can be defined for each parameter set. The active parameter set is marked with an asterisk.

If the "Settings -> Control -> Configuration automatically checked" option is not activated, the user can press the "Update" button to read the configuration anew.

NORDCON – Manual

Gantrol	_	Process dat	as			
Control word	Status word	Set point free	quency	Actual	frequenc	y
047E ····	0931		* %	0,0		%
	P1 >> P- Set	Off 0	* * *	Torque	current	%
Auto Segti		Off		Error o	ode	
Proascast		0	* *	0		16
NORDAC		Sen <u>d</u>	Up	date	Stan	dard

Figure 21: Management of setpoints and actual values

1.	Button: Open status word overview	8.	Phase sequence reversal
2.	Status word	9.	Acknowledgement
3.	Button: Open control word overview	10.	Enable/disable automatic sending
4.	Enter control word	11.	Enable/disable broadcast telegram
5.	Input of different parameter sets	12.	Voltage disable
6.	Disable	13.	Quick stop
7.	Enable		

Fehler! Verweisquelle konnte nicht gefunden werden. "Fehler! Verweisquelle konnte nicht gefunden werden."

6.3.4 Formatting of Setpoint and/or actual value

Char	Name	Description
"%"	16 Bit standardised values	This standardisation transforms the setpoint/actual value to a 16 Bit standardised value. Standardisation means a scaling of value range and is between -200% and 199% of a basic value (e.g. nominal frequency).
"16"	16 Bit not standardised	With this formatting the setpoint and actual value are transformed to 16 Bit value and transmitted to inverter and displayed without any scaling.
"B"	DigInBits	With this Formatting the setpoint and actual value are transformed to 8 Bit value. The bit status is displayed individually in check boxes. In these check boxes each bit of the setting value can be changed.
"L"	32 Bit Low-Word	With this formatting the setpoint and actual value are taken as the low word (16 Bit) of a 32 Bit word. If there is another setpoint or actual value parametrised with formatting "32 Bit High-Word", then both values are combined in the top display. The setting value can be given as a 32 Bit value.
"H"	32 Bit High-Word	With this formatting the setpoint and actual value are taken as the high word (16 Bit) of a 32 Bit word. (see "32 Bit Low-Word").

6.3.5 Status word

The "Status word" window displays the current status word in bits. The individual bits are listed in tabular form with bit number, name and status. According to the bit value and the meaning, a coloured LED is additionally displayed.

Meaning of LEDs:

LED	Meaning
۲	The bit is set and/or the device is enabled.
۲	An error is active or the device is still disabled.
۲	The bit is not set.

With the default setting, the status word is read cyclically and the changes are displayed in the window. If cyclic reading must be deactivated, the "Automatic" option must be deactivated in the pop-up menu (right click).

By default, the window is docked left of the "Control" window. To position the window freely on the desktop, select "Docking -> No" via the pop-up-menu. For space-saving purposes, the window can also be inserted next to the "Common" tab. For this, the window (keep left mouse button pressed) must be dragged over the "Common" tab. After releasing the button, the window is displayed as a tab. Double-clicking the tab returns to the window mode.

Figure 22: Status word overview

NORDCON - Manual

6.3.6 Control word

The "Control word" window displays the current control word in bits. The individual bits are listed in tabular form with bit number, name and status. According to the bit value and the meaning, a coloured LED is additionally displayed. If the device is configured for control via USS, the bits can be changed via the checkbox. Any change of the control word is immediately sent to the device ("Auto Send").

Meaning of LEDs:

LED	Meaning
۲	The bit is set and/or the device is enabled.
۲	An error is active or the device is still disabled.
۲	The bit is not set.

With the default setting, the status word is read cyclically and the changes are displayed in the window. If cyclic reading must be deactivated, the "Automatic" option must be deactivated in the pop-up menu (right click).

By default, the window is docked left of the "Control" window. To position the window freely on the desktop, select "Docking -> No" via the pop-up-menu. For space-saving purposes, the window can also be inserted next to the "Common" tab. For this, the window (keep left mouse button pressed) must be dragged over the "Common" tab. After releasing the button, the window is displayed as a tab. Double-clicking the tab returns to the window mode.

Figure 23: Control word overview

7 Remote control

NORDCON can simulate the control unit of the relevant frequency inverter. For this, the frequency inverter transfers the contents of its display to NORDCON. The key functions are simulated on the PC and sent to the frequency inverter. The frequency inverter can only be controlled via the remote control window, if it has not previously been enabled via the control terminals or via a serial interface (P509 = 0 and P510 = 0). In addition, for this the parameter "PotentiometerBox Function" (P549) must not be set to function $\{4\}$ "Frequency addition" or function

{5} "Freq. subtraction".

i Information

Timeout monitoring

NORD Frequency inverter can be controlled via the keyboard (enable, setpoint +/-, direction of rotation, etc.). In this case the timeout monitoring is not enables, so that no further control is possible on interruption of the connection between the PC and the frequency inverter.

7.1 Standard

If the 15.1 "User interface" option is not activated, the standard window for the "Remote Control" function is used for all devices.

3_	[00] 20xE 550W/230V/1 ×	\bigcirc
2-	<u>80000</u>	-(4)
1-		-(5)
8		6
(7)	20xE 550W/230V/1	C

Figure 24: Remote control "Standard"

1.	Switch off	5.	Decrease value
2.	Parameter set display (first digits)	6.	Confirm
3.	Display	7.	Change direction of rotation
4.	Increase value	8.	Switch on

Name of action	Image	Description
Enable		To switch on the frequency inverter. It is now enabled with the set jog frequency (P113), if applicable. Any preset minimum frequency (P104) is supplied as a minimum. Parameters >Interface< P509 and P510 must be = 0.
Switch off enable	0	To switch on the frequency inverter. It is now enabled with the set jog frequency (P113), if applicable. Any preset minimum frequency (P104) is supplied as a minimum. Parameters >Interface< P509 and P510 must be = 0.
Change direction of rotation	0	The motor's direction of rotation changes after pressing this key. "CCW direction of rotation" is indicated by a minus sign. Note: Take care when operating pumps, screw conveyors, fans, etc. Block the key with parameter P540.

NORDCON - Manual

Name of action	Image	Description
Increase	٢	The motor's direction of rotation changes after pressing this key. "CCW direction of rotation" is indicated by a minus sign.
		Note: Take care when operating pumps, screw conveyors, fans, etc. Block the key with parameter P540.
Decrease	▼	The motor's direction of rotation changes after pressing this key. "CCW direction of rotation" is indicated by a minus sign.
		Note: Take care when operating pumps, screw conveyors, fans, etc. Block the key with parameter P540.
Confirm	J	Press this key to save a changed parameter value, or to switch between the parameter number and the parameter value.
		Note: If a changed value is not to be saved, the key can be used to exit the parameter without saving the change.
Switch off phase sequence and enable		Simultaneously pressing the STOP key and the "Phase sequence reversal" key initiates a quick stop.
Confirm + enable		Simultaneously pressing the ON key and the "Confirm" key switches to the edit mode for an enabled device.

All functions possible with the control unit (ControlBox) of the frequency inverter can be carried out.

7.2 NORDAC SK 200 E

The window for remote control of the frequency inverters of the NORDAC SK 200 E series looks like this:

Name	lcon	Description		
Enable	\bigcirc	Switching on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A preset minimum frequency (P104) must at least be provided. Parameter >Interface< P509 and P510 must = 0.		
Disable	0	Switching off the frequency inverter. The output frequency is reduced to the absolute minimum frequency (P505) and the frequency inverter shuts down.		
Change dir	C	The motor rotation direction changes when this key is pressed. "Rotation to the left" is indicated by a minus sign.		
		Attention: Take care when operating pumps. screw conveyors, ventilators, etc. Block the key with parameter P540.		
Up	٢	Press key to increase the frequency. During parameterisation, the parameter number or parameter value is increased.		
Down	◙	Press the key to reduce the frequency. During parameterisation, the parameter number or parameter value is reduced.		
Enter	Ĵ	Press "ENTER" to store an altered parameter value, or to switch between parameter number or parameter value.		
		Note : If a changed value is not to be stored, the key can be used to exit the parameter without storing the change.		
Change Dir + Stop		By simultaneously pressing the STOP key and the "Change direction key", a quick stop can be initiated.		
Enter + On		If the inverter is enabled via the "ON" key, the parameterisation mode can be reached by pressing the ON and ENTER keys simultaneously.		

All functions available with the operating unit (control box) of the frequency inverter can be performed.

7.3 NORDAC SK 700/500/300 E

The window for remote control of the frequency inverters of the NORDAC SK 700/500/300 E series looks like this:

Name	lcon	Description	
Enable	1	Switching on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A preset minimum frequency (P104) must at least be provided. Parameter >Interface< P509 and P510 must = 0.	
Disable	0	Switching off the frequency inverter. The output frequency is reduced to the absolute minimum frequency (P505) and the frequency inverter shuts down.	
Change dir	C	The motor rotation direction changes when this key is pressed. "Rotation to the left" is indicated by a minus sign.	
		Take care when operating pumps, screw conveyors, ventilators, etc. Block the key with parameter P540.	
Up	٢	Press key to increase the frequency. During parameterisation, the parameter number or parameter value is increased.	
Down	◙	Press the key to reduce the frequency. During parameterisation, the parameter number or parameter value is reduced.	
Enter	Ð	Press "ENTER" to store an altered parameter value, or to switch between parameter number or parameter value.	
		Note : If a changed value is not to be stored, the key can be used to exit the parameter without storing the change.	

Name	lcon	Description	
Change Dir + Stop		By simultaneously pressing the STOP key and the "Change direction key", a quick stop can be initiated.	
Enter + On		If the inverter is enabled via the "ON" key, the parameterisation mode can be reached by pressing the ON and ENTER keys simultaneously.	

All functions available with the operating unit (control box) of the frequency inverter can be performed.

7.4 NORDAC vector mc

The window for remote control of the frequency inverters of the NORDAC vector mc series looks like this:

Name	lcon	Description		
Enable	\bigcirc	Switching on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A preset minimum frequency (P104) may at least be provided. Parameter >Interface< P509 and P510 must = 0.		
Disable	0	witching off the frequency inverter. The output frequency is reduced to the absolute ninimum frequency (P505) and the frequency inverter shuts down.		
Change dir	0	he motor rotation direction changes when this key is pressed. "Rotation to the left" is ndicated by a minus sign.		
		Attention:		
		Take care when operating pumps, screw conveyors, ventilators, etc. Block the key with parameter P540.		

NORDCON – Manual

Name	lcon	Description		
Up	٢	Press key to increase the frequency. During parameterisation, the parameter number or parameter value is increased.		
Down	∢	ress the key to reduce the frequency. During parameterisation, the parameter umber or parameter value is reduced.		
Enter	Ð	Press "ENTER" to store an altered parameter value, or to switch between parameter number or parameter value. Note: If a changed value is not to be stored, the key can be used to exit the parameter without storing the change.		
Change Dir + Stop		By simultaneously pressing the STOP key and the "Change direction key" , an quick stop can be initiated.		
Enter + On		If the inverter is enabled via the "ON" key, the parameterisation mode can be reached by pressing the ON and ENTER keys simultaneously.		

All functions available with the operating unit (control box) of the frequency inverter can be performed.

7.5 NORDAC vector ct

The remote control window for the NORDAC vector ct series has the following appearance:

Name of action	Pictu re	Description		
Enable		To switch on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A pre-set minimum frequency (P104) may at least be provided. Parameter >Interface< P509 and P510 must = 0.		
Switch off enable	0	To switch on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A reset minimum frequency (P104) may at least be provided. Parameter >Interface< P509 and P510 must = 0.		
Change direction of rotation	0	The direction of rotation of the motor changes when this key is pressed. "Rotation to the left" is indicated by a minus sign.		
		Notice: Take care when operating pumps, screw conveyors, ventilators, etc. Block the key with parameter P540.		
Increase	٢	The direction of rotation of the motor changes when this key is pressed. "Rotation to the left" is indicated by a minus sign.		
		Notice: Take care when operating pumps, screw conveyors, ventilators, etc. Block the key with parameter P540.		
Reduce	◙	The direction of rotation of the motor changes when this key is pressed. "Rotation to the left" is indicated by a minus sign.		
		Notice: Take care when operating pumps, screw conveyors, ventilators, etc. Block the key with parameter P540.		
Confirm	Ð	Press this key to store a changed parameter value, or to switch between the parameter number and the parameter value.		
		Note: If a changed value is not to be stored, the key can be used to exit from the parameter without saving the change.		
Rotation direction + Switch off enable		By simultaneously pressing the STOP key and the "Change direction key ", a quick stop can be initiated.		
Confirm + enable		Simultaneously pressing the ON key and the "Confirm" key switches to the editing mode for an enabled device.		

All of the functions which are possible with the control unit (Control Box) can be carried out.

8 Oscilloscope

8.1 Overview

The oscilloscope function integrated in NORDCON can show process data of an NORD Frequency inverter as an arithmetic chart.

i Information

This option ist not available for serieses NORDAC vector ct and NORDAC vector mc!

The features of oscilloscope-function are:

- Monitoring of up to 4 channels
- Many different ways of triggering
- Scaling of each measurement
- · Calculation of average values, effective value, etc.
- Save, print and export of measurement data

8.2 Display

The oscilloscope function can measure and display 4 channels max:

The following settings can be done:

Name	Description
Auto	Automatic scaling of all measured data
Offset	Selection of display detail (displacement of all data in x- or y-direction)
Zoom	Display size (Zoom of all data) Note : With the right mouse button you can choose between the modes "Move" and "Measurement", if the mouse pointer is on the display. In "Move" mode you can choose the detail of display by mouse pointer by pressing the left mouse button while moving over the display.
Auto scrolling	With this option during a recording the time axis is scrolled automatically to the last point.
Resolution	In this combination field the user can change the scaling of the time axis.
Comment	Additional information field, where further information for the measurement series can be stored.
Cursor	Execution of measurement

8.3 Handling

Follow the next steps to execute a measurement:

1. Choice of channels

V	ð					
File	Start	Device	Project	Oscilloscope	Messages	
·····	øΞ	<u>^_</u>	\bigcirc	💍 Reset offset	Enal	
Select ~	Source	Resolution ~	Color	<u>↑</u> Offset -0,08 A	Leve	
1 (1 Channel - (~P735) Speed encoder					
2 (2 Channel - (~P720) Torque current					
✓ 3 (✓ 3 Channel - (~P721) Field current 28 A ⁻					
4 (Channel - (:	=P719) Curre	ent	26 A ·		
	1400 rpm	7 A ·	0,5 A	24 A-	, (
	1300 rpm	6,5 A 6 A	6 A 5,5 A	22 A	A	

There is a popup menu to make the choice of the 4 channels. There is a colour referring to each channel. Each channel can be switched on and off by checkboxes. The resolution and offset can be chosen for each channel separately. When displaying the results of measurement, the values of the vertical axis of each channel can be chosen and indicated.

Importance of measured value

Measured value	Description
(=P[Number]) [Name]	The value of this measuring function is updated in the time slot pattern by approx. 100 milliseconds and corresponds to the value indicated of the parameter.
[Name]	The value of this measuring function is updated in a time slot pattern by approx. 100 milliseconds.
(≈ P[Number]) [Name]	The value of this measuring function is updated in a time slot pattern by approx. 50 milliseconds.
(~P[Number]) [Name]	The value of this measuring function is updated in a time slot pattern of approx. 250 μ s.

2. Setting of trigger

					0 X
ssages View				(6	} 🤉 🛈
Enable Level 0 Edge 0 m	s at trigger 20 s	Mode Stop @ On/	o fit Time scale 20 ms - • • • • • • • • • • • • • • • • • •		
Trigger Pre-Tr	igger / Delay Samplerate/-time	Recording	Display	Measure	~

The trigger starts the measurement. First choose the source of trigger. Trigger sources can be measurement values, digital inputs, status of inverter, etc. The starting conditions are defined by trigger level respectively trigger edge.

1 Information

Trigger levels

The increments of the trigger levels are different depending on the trigger source. Therefore not every value can be set. After starting a recording, the closest possible value is calculated and set.

Time between two measured values is set by sampling rate. Numbers of measured values and sampling rate define the time of sampling. The Pre-trigger/Delay set the beginning of the measurement in relation to the trigger event.

Information

Measured values

The dynamic of measured values defines the best rate of sampling: fast changing values need a low sampling rate. The number of measured values defines the time of sending the values from inverter to NORDCON.

i Information

Pre-Trigger

If sampling starts before the trigger, it must be noted that sampling starts at the START time at the earliest. I.e. if a sampling start before the trigger of 10 s is set, However, if the trigger occurs 2 s after START, the first 8 s of the sampling are invalid.

3. Sampling modes

The oscilloscope has 2 different modes. The user can choose between "Single" and "Roll" mode. The "Single" mode is the standard mode. In this mode a recording starts with the current trigger settings. The recording time depends on the oscilloscope memory of the device and amounts to max. 2000 seconds. The values are noted in the adjusted sampling rate.

The roll mode makes a recording over longer period. The noted values are transferred immediately to the PC. Therefore the user cannot change the sampling rate. It depends on the speed of the transmission.

4. Starting of measurement

The Start-Button activates the measurement. The event of trigger is detected. When the event appears a recording starts in the inverter. The transmission of data to NORDCONstarts in the same moment. This can be cancelled by Stop. After transferring all data a new measurement can be started or new settings can be made by pressing the "New" button.

8.4 Measurement

After recording the measurement completely, measurements on the results can be done using cursors.

There are two cursors available for this. The cursors can be moved by . The choice of cursor is made by . To choose the mode "Move" and "Measurement" by right mouse button the pointer has to be on display. In the measure mode the cursors can be set by left mouse button. The values of the measured lines 1 and 2 are displayed on cursor 1 and cursor 2. Additionally the calculations like average values are performed. Pressing on the "Calculation" button starts the shift of calculation.

8.5 Save and Print

The recorded series of measurements can be saved, exported or printed.

Menu item "File"

Name	Description
Open	A stored measurement data file can be chosen and loaded. During loading there is a choice if only the setting should be loaded or all data of measurement.
Save as	The present measurement data and settings are saved with a new filename.
Export	The data can be exported as graphic file or data table.
Print	The lines of measurement are printed with present settings (colour of background: white).

Scope Offline

In Offline-mode (no inverter is connected) a saved measurement file can be loaded by menu item File|Open.

9 Macro editor

The macro editor is designed to create simple process sequences. The user interface provides a facility for creating and adapting a macro using context menus, toolbars or tool windows. The individual instructions can be moved within the view using Drag n Drop. The standard functions such as saving and loading a macro are also integrated in the context menu. The macros are stored in the standard format "XML". The format of the preceding version can be imported using the "Open" menu item, file type "Macro Files V1.26".

9.1 User interfaces and views

As well as the editor window, other views are also needed for macro generator handling. These views are available as tool windows. These windows can be docked and undocked at the edge of the main window. All views can be displayed and closed using the "View" menu item in the pop-up menu.

9.1.1 Window "Variables"

The view "variables" can be opened and closed over the menu option "View->Macro->Variables". It is used for debugging. In this window after starting macros all variables and objects macros with current rating are indicated. The expenditure of the value can be stopped in the view "Properties->Display format".

There are the following formatting:

- Decimal
- Hexadecimal
- Binary

9.1.2 Properties window

The "Property" view can be opened and closed via the "View -> Properties" menu item. All properties of the current instruction are displayed in this window. Depending on the instruction, the number of properties and the type thereof can change.

Name	Description
Result	You can change the object to which you would like to assign a new value with this property. Only objects to which a new value can be assigned can be selected (e.g. control word, parameters or variables).
Operand	With this property the user can select the object that is to be used with an assignment or operation.
Operator	This property defines the type of operation (e.g. Addition).
Comment	The user can assign a comment to any instruction using this property.

Variables, control or status words, setpoints or actual values or parameters can be designated as objects in the macro generator. Each of these objects has different parameters.

NORDCON – Manual

Object	Parameter	Description							
Variable	Name	The parameter defines the name of the variable or constant. All variables that have already been used are displayed in the selection box. If you would like to create a new variable, a name that has not yet been used must be entered. No distinction is made between upper and lower case.							
	Display format	 This parameter defines the display format in the "Variables" view. One of the following displays can be selected: Decimal Hexadecimal 							
		• Binary							
Constant	Value	The parameter defines the value of the constant.							
	Display format	 This parameter defines the display format in the "Variables" view. One of the following displays can be selected: Decimal Hexadecimal Binary 							
Control word, Status word	Node number	This parameter defines the USS node number of the required device. Note : Since the current control word cannot be read out of the device, the control word is set to 0 when the scheduler starts.							
	Display format	 This parameter defines the display format in the "Variables" view. One of the following displays can be selected: Decimal Hexadecimal Binary 							
Setpoint and actual values	Node number	This parameter defines the USS node number of the required device. Note : Since the current setpoints cannot be read out of the device, the values are set to 0 when the scheduler starts.							
	Туре	This parameter defines the type of the value. The types listed in table "Setpoint and actual value types" are available to the user.							
	Format	This parameter defines the formatting of the setpoint and actual values. The possible formats are shown in table "Setpoint and actual value formatting".							
	Resolution	This parameter defines the resolution of the setpoint and actual values. It is used to format the instruction in the editor.							
	Display format	 This parameter defines the display format in the "Variables" view. One of the following displays can be selected: Decimal Hexadecimal Binary 							

Object	Parameter	Description
Parameter	Node number	This parameter defines the USS node number of the required device.
	Parameter number	This value defines the number of the parameter (see "Device catalogue" view).
	Sub-index	This value defines the sub-index of the parameter.
	Resolution	This value defines the resolution of the setpoint and actual values. It is used to format the instruction in the editor.
	Data type	This value defines the data type of the parameter. Only 2 data types are used in the current devices (16-bit integer and 32-bit integer).
	Display format	 This parameter defines the display format in the "Variables" view. One of the following displays can be selected: Decimal Hexadecimal Binary

Setpoint and actual value types

Туре	Description
Value 1 (16-bit)	The 1st, 2nd or 3rd setpoint or actual value should be used.
Value 12 (32-bit)	The first and second setpoint or actual value should be used as a 32-bit value.
	Note : The device must be appropriately configured for this configuration (see "Setpoint or actual value configuration").
Value 13 (32-bit)	The 1st and 3rd setpoint or actual value should be used as a 32-bit value.
	Note : The device must be appropriately configured for this configuration (see "Setpoint or actual value formatting").
Value 23 (32-bit)	The 2nd and 3rd setpoint or actual value should be used as a 32-bit value.
	Note : The device must be appropriately configured for this configuration (see "Setpoint or actual value formatting").

Setpoint and actual value formatting

Formatting	Description
Standardised	This formatting interprets the setpoint or actual value as a 16 bit standardised value. Standardisation means scaling of the value range and is between -200% and 199% of a basic value (e.g. nominal frequency).
Not standardised	In this formatting the setpoint or actual value is interpreted as a 16 bit value, which is transferred to the device and displayed without scaling.
Low word (32-bit)	This formatting defines that the first word is the low word and the 2nd value is the high word value (32-bit). This value can only be selected for 32-bit types.
High word (32- bit)	This formatting defines that the first word is the high word and the 2nd value is the low word value (32-bit). This value can only be selected for 32-bit types.

Note:

Please ensure that the configuration of the devices corresponds with the settings.

9.1.3 Log window

All events in the sequence control are saved in a log. To display the log, you need to open the "Log" view using the "View -> Log" menu item. The value is also a tool window and can be docked and undocked at the edge of the main window. All log entries are shown in a sorted list in the window. In this case, the last entry is at the beginning of the list.

Saving the log

The log can be saved using the "Save as..." menu item in the pop-up menu. A file selection dialogue then opens, and the user must stipulate the name and path for storing the log file. If the user confirms with "Save", the current list is saved in the text file.

Deleting the log

The log can be deleted using the "Delete" menu item in the pop-up menu. All entries are then irretrievably deleted.

Filtering the entries

The user can filter the log entries in accordance with the type of entry using the filter function. The types of the entries to be entered in the log can be defined using the "Filter" menu item.

9.2 Working with macros

9.2.1 Create a new macro

A new document (macro) is generated by the menu option "New" in the context menu. Depending if the document was previously opened, the macro editor offers to store of the old document. A new document is generated if the user does not confirm with "Cancel". Only one document can be opened at the same time in the current version.

9 Macro editor

9.2.2 Open a macro

Opening macros is implemented in the menu option "Open" or with the combination of keys "Ctrl+O". Subsequently, a selection of files dialogue opens, in which the user can select the desired macro. If the user would like to open a previous version of the macro, he must change the data type in the file selection dialogue accordingly.

9.2.3 Save a macro

Storing macros is implemented in the menu option "Save" or the combination of keys a "Ctrl+S". This function is available however only for previously generated documents. For all new documents the function must be implemented "Save as...".

The function is implemented in the menu option "Save as...". Subsequently, a selection of files dialogue opens, in which the user must select the file name as well as the path. After confirmation with "Save" the macro is stored. After the completion of the procedure the newly named macro indicated in the title bar.

9.2.4 Inserting instructions

The "Insert" function is activated using the "Insert" menu item or key combination "Ctrl+V". It inserts a previously copied or cut instruction below the current position in the document. If no instruction has been copied or cut beforehand, the menu item is deactivated. In the current version, each copied or cut instruction can only be inserted once.

9.2.5 Copying instructions

The "Copy" function is activated using the "Copy" menu item or key combination "Ctrl+C". It copies the selected line into the clipboard of the generator. Only one line can be selected in the current version. This means that only one instruction can be copied. The Block instruction is an exception. This can only be copied in its entirety.

9.2.6 Cutting instructions

The "Cut" function is activated using the "Cut" menu item or key combination "Ctrl+X". It copies the selected instruction into the clipboard of the generator. When the cut instruction is inserted, the old instruction is deleted from the document. The restriction that only one instruction can be cut also applies to this function.

9.2.7 Delete from instruction

The function is implemented in the menu option "Delete" or the combination of keys "Ctrl + Del". It deletes the marked instruction from the document.

9.2.8 Search and replace

The function "Search and replace" is implemented in the "Search and replace" menu or the combination of keys "Ctrl+H" where the dialogue "Search and replace" opens. This allows the user to insert the search and replacement vocabulary and start the change procedure.

9.2.9 Shift up instruction

The function is implemented in the menu option "Shift up". It shifts the marked instruction a line upward. If the top line of document is marked no action is implemented. Shifting of instructions can also be done by drag and drop with the mouse.

NORDCON - Manual

9.2.10 Shift down instruction

The function is implemented in the menu option "Down". It shifts the marked instruction one line downwards. If the last line of the document is marked no action is implemented. Shifting instructions can also be done by drag and drop with the mouse.

9.2.11 Creating new instructions

New instructions are created using the "Functions" menu item in the context menu. The new instructions are always inserted below the selected line. The user can then change the position of the new instruction (see "Up" and "Down").

The following functions are available to the user in this version:

Name	Description								
Assignment	The instruction assigns a new value to a macro object. The new value can be read out of another object, or the user defines a constant. By default, the line is inserted as shown in example 1. The Parameter function can be adapted in the "Properties" view.								
	Example:								
	Device 00 Controlword = 047F hex // Assign value of 1151 to control word								
	Var1 = Device 00 Statusword // Assign value of status word to variable								
	Note:								
	Setpoints can only be assigned within a Block instruction.								
Jump mark	The instruction defines a jumping point in the macro. The user can jump to the location of the jump mark using the "Goto" function. By default, the line is inserted as shown in example 1. The Parameter function can be adapted in the "Properties" view. The name of the jumping point must be changed, since duplicate names are not supported. The generator always jumps to the first jump mark in the macro.								
	Example:								
	Label1: // Defines the "Label1" jump mark								
	or Start: // Defines the "Start" jump mark								
Sleep	The instruction generates a pause in the execution of the macro. The time is specified in units of "ms". By default, the line is inserted as shown in example 1. The time can be adapted in the "Properties" view.								
	Example:								
	Sleep 1000 ms // Wait for 1s								
	or								
	Sleep 500 ms // Wait for 0.5s								
Go to	The instruction generates a jump in the macro. After executing the instruction, the generator jumps to the line of the jump mark with the relevant name. If the generator does not find a jump mark with the name, the line is ignored. If no jump mark has been defined in the macro yet, the menu item is deactivated. The first jump mark is always entered by default. The name of the jump mark can be adapted in the "Properties" view.								
	Example:								
	Goto Start // Go to jump mark "Start"								

Name	Description									
Condition	The instruction generates a conditional jump in the macro. If the condition is true, the generator jumps to the line of the jump mark with the relevant name. By default, the line is inserted as shown in example 1. The parameters of the instruction can be adapted in the "Properties" view.									
	Example:									
	if Device 00 Controlword == 047F hex then // If the control word has a value of 1151 Goto Start // then go to jump mark "Start"									
Block	This instruction allows the user to execute several instructions in one instruction. These assignments are restricted to the "Control word" and "Setpoints" objects. Depending on the configuration of the device and the purpose of use, the user can choose between "Control value with 1 setpoint", "Control value with 2 setpoints" or "Control value with 3 setpoints".									
	Example:									
	Block // Transmit control word and setpoint1 with 1 USS protocol									
	Device 00 Controlword = 1151 // Assign value of 1151 to control word									
	Device 00 Setpoint1 = 20.0 // Assign value of 20 to setpoint 1									
Mathematical and logical operations	These instructions make it possible for the user to carry out simple mathematical and logical operations on objects. The newly-calculated value is then assigned to an object. The parameters of the instruction can be adapted in the "Properties" view.									
	Example:									
	Var1 = Device 00 Control word + 047F hex // Addition									
	Var1 = Device 00 Status word AND 047F hex // "And" operation									

9.3 Scheduler

Auto

With this option activated (automatic mode) after starting the scheduler line for line processing occurs. If it is deactivated (single step mode) (menu entry "Next" or combination of keys "F12") the user must run each instruction manually.

Loop

With this option activated the macro is implemented in a continuous loop. This means that after doing the last instruction the scheduler jumps back to the beginning of the macro.

9.3.1 Start sequence

The scheduler is started using the "Start" menu item or key combination "F9". If automatic mode is active, processing takes place line by line. In single-step mode, only the first line is executed after starting. The user must call up the "Next" action for each subsequent line. The scheduler can only be started again after the macro has been worked through or the user has aborted the run. The parameters of the instructions cannot be edited whilst the scheduler is running.

9.3.2 Cancel a macro

The scheduler is terminated in the menu option "Cancel" or the combination of keys "F11 ".

9.3.3 Execute next instruction

This function can be found in the menu option "Next" or with the key "F12". It is available only in the single step mode and instructs the scheduler to implement the next instruction in the macro. If the last instruction was implemented, the scheduler is terminated automatically.

10 USS Frame-Editor

The USS protocol defines an access procedure according to the Master/Slave principle for communication via a serial bus. A sub-set of this also includes point-to-point connection. A master and a maximum of 31 slaves can be connected to a bus. The individual slaves are accessed by the master via an address character in the telegram. Direct exchange of messages between the individual slaves is not possible. In semi-duplex mode communication is carried out using USS telegrams.

File	Start	Device	Project	Messages	View	\$? (j
	• • •		\bigcirc			
Layout ~	Extras	Devices report	Messages	Remote		
	↓↑ US	S Frame-Edi	tor F11			^

The USS Frame Editor was developed to generate and analyse USS telegrams. It is fully integrated in the NORDCON user interface and is opened via the menu item "Extras/USS Frame-Editor". The editor displays the master and slave telegram in several views. Via the tabs, the user can switch between the 10.1 "Master (order)" and the 10.2 "Device (response)".

Object	Description											
Telegram type	This object specifies the size and structure of the USS telegram. The frequency inverter supports the following types:											
	Type Length (LGE) Description											
	PPO 0	12	Standard telegram with process data and 16 bit parameter value									
	PPO 1	14	Extended parameter data telegram with 32 bit parameter values and process data									
	PPO 2	18	Telegram with extended process data (main and two auxiliary setpoint values) and 32 bit parameter value									
	PPO 3	6	Process data telegram with main setpoint value without parameter data									
	PPO 4	10	Extended process data telegram with main and auxiliary setpoint values without parameter data									
	PPO 6	16	Telegram with 5 setpoint/actual values									
			Notice: This telegram type is not supported by all frequency inverters.									
Address	This object	t contains the addre	ess of the frequency inverter which is accessed.									
Status word	This object	t contains the statu	s bit of the frequency inverter.									
Control word	This object	t contains the contr	ol bits (e.g. enable or Quick Stop).									
Setpoint/actual value 1-5	The setpo (e.g. frequ frequency	int/actual values are lency setpoint or po inverter.	e 16 bit or 32 bit values. These represent different values sition setpoint) depending on the parameterisation of the									
Format	This object	t contains the formation	at of the setpoint. The following formats are supported:									
	 16 Bit standard value This formatting interprets the setpoint as a 16 standardised value. Standardisation means so value range and is between -200% and 199% value (e.g., nominal frequency) 											
	• 16 Bit	non-standardised	In this format the setpoint is interpreted as a 16 bit value, which is transferred to the frequency inverter and displayed without scaling.									

Parameter order	The object contains the parameter order. The following orders are defined:					
	 Request parameter value Change parameter value (16 bit) Change parameter value (32 bit) Request parameter value (array) Change parameter value (array 16 bit) Change parameter value (array 32 bit) Request the number of array elements Change parameter value (array double word) without writing to the EEPROM Change parameter value (array word) without writing to the EEPROM Change parameter value (double word) without writing to the EEPROM Change parameter value (word) without writing to the EEPROM 					
Parameter number	This object contains the parameter number.					
Index	The object contains the parameter index.					
Value	This object contains the parameter value. Depending on the telegram type, this is a 16 or 32 bit value. The display of the value still depends on the resolution of the value.					
Resolution	This object contains the resolution of the parameter. If the resolution is changed, only the display of the parameter value changes. Please refer to the frequency inverter instructions for the resolution value.					

Process value sequence 1,3,2 for SK700, SK300, Vector CT and VT

With this option, the sequence for the 2 and 3 process value can be changed for older frequency inverters. This option only affects the telegram types PPO 2 and PPO 4. The sequence of the process values is displayed in the table view.

6.3.5 "Status word"

6.3.6 "Control word"

10.1 Master (order)

This view is divided into several sections. In the upper section, the order telegram is displayed as a tree structure. The individual components of the telegram are listed by subject in the tree structure. All entries with a white background can be changed by the user. To do this, the entry must be highlighted with the mouse or the keyboard. A further click on the entry opens the input editor. The input editor may differ, depending on the entry. For numerical values, the input editor can also be opened by pressing a number key. The input for the new value is adopted and the input editor closed by pressing the "Enter" key or by highlighting a new entry. If the value cannot be adopted, the old value remains in use. If the input editor is a selection list, a new value is adopted by selecting an entry and the input editor is closed. If a change is not to be adopted, the user must exit from the input editor by pressing the "Esc" key. A description of each highlighted entry is displayed below the tree structure. In the lower section, the order telegram is displayed byte-wise in a table. The highlighted cells correspond to the entry which is highlighted in the tree structure.

USS	Fran	ne-Ed	litor														×
Mast	er (or	der)	Dev	ice (r	espo	nse)											
0	1	2	3	4	5	6	7	8	9	10	11	12	13				
STX	LGE	ADF	PKE	PKE	IND	IND	PWI	PWI	ZSV	ZSV	IW1	IW1	BCC				
02	0C	00	00	00	00	00	00	00	00	00	00	00	0E				
	Com																
T	солл т	/ne			P	PO0											
	Δ	ddres	s		0												
.	Proce	ess da	ata														
	- s	tatus	word		0	000											
E	Đ⊷ A	ctual	value	1	0	,0											
<u>i</u>	Parar	neter	data														
	R	espor	nse		N	o res	ponse										
	P	arame	eter ni	umbei	r 0												
	Pi Pi	arame	eter in	dex	0												
	tr. V	alue			0												
Res	spo	nse															
The	user	can h	nere d	lispla	y a re	espor	nse te	legra	m.								
					-			-									
															_		
P	Process data order 1,3,2 for SK700, SK300, Vector CT and VT Paste reque								uest								

Copy query

This action converts the order telegram into a hex coded byte string and copies the string to the Windows clipboard.

10.2 Device (response)

This view is divided into several sections. In the lower section, the response telegram is displayed bytewise in a table. The user can change the response telegram in this table. All bytes except for STX, LGE and BCC can be changed. The user selects a cell and enters a new value in the table. The context menu of the table must be opened if the length and structure of the telegram is to be changed. After this, a new telegram type is selected in the menu.

The tree structure is updated after each change. The tree structure is only used to visualise the components of the USS telegram and cannot be edited. An exception to this is the formatting of actual values and the resolution of the parameter value. This information is not contained in the USS telegram. The formatting must be changed according to the settings for the actual values. The resolution must also be selected according to the parameter. Please refer to the instructions for the particular frequency inverter to obtain the value.

The status word is displayed as a hexadecimal value in the tree structure. A further view is implemented for visualisation of the individual bits. The status word must be highlighted to open the view. A further click on the entry opens the input editor in write-protected mode. The user can then open the view with the "..." button.

NORDCON – Manual

USS	Fram	ne-Ed	litor															×
Mast	er (or	der)	Dev	ice (r	espoi	nse)												
0	1	2	3	4	5	6	7	8	9	10	11	12	13					
STX	LGE	ADF	PKE	PKE	IND	IND	PWI	PWI	ZSV	ZSV	IW1	IW1	BCC					
02	0C	00	00	00	00	00	00	00	00	00	00	00	0E					
	Com	000													 	 		
T	сопш — т\	/De			Р	PO0												
	A	ddres	s		0													
<u>.</u>	Proce	ss da	ata															
	- S	tatus	word		0	000												
6	₽ • A	ctual	value	1	0	.0												
÷	Paran	neter	data															
	R	espor	ise		N	o res	ponse											
	···· Pa	arame	eter n	umbei	r 0													
	···· Pa	arame	eter in	dex	0													
6	÷ V	alue			0													
Res	spo	nse																
The	user	can h	ere d	lispla	vare	espor	ise te	legra	m.									
	aser .	curr	i ci ci c	nopro	,	-spor		regra										
P	Process data order 1,3,2 for SK700, SK300, Vector CT and VT Paste reques							est										

Enter response

This action opens an input dialogue for a response telegram. The user can enter the telegram as a hex-coded byte string.

11 PLC (Programmable Logic Controller)

11.1 General

Frequency inverters from NORD of the series listed below have logic processing based on the IEC 61131-3 standard applicable to programmable logic controllers (PLC). This allows the automation of a certain process, a machine function or even an entire production line with NORD frequency inverters.

The reaction speed or computing power of this PLC is suitable to undertake smaller tasks in the area of the frequency inverter. This way, inputs of the frequency inverter or information from a field bus can be monitored, evaluated and further processed into appropriate setpoints for the frequency inverter. Coupling with other devices from NORD allows for the visualisation of system states and the input of special customer parameters. This results in potential savings in the limited range by eliminating the use of an external PLC solution. The supported programming languages are Instruction List (IL, AWL) and Structured text (ST). These are machine-orientated, text-based programming languages whose scope and application is specified in IEC 61131-3.

PLC functionality	
NORDAC PRO	(SK 500P SK 550P)
	(SK 520E SK 545E)
NORDAC ON/ON+	(SK 300P SK 350P)
NORDAC FLEX	(SK 200E SK 235E)
NORDAC LINK	(SK 155E-FDS/SK 175E-FDS)
	(SK 250E-FDS SK 280E-FDS)
NORDAC BASE	(SK 180E/SK 190E)

Table 1: Overview PLC functionality for frequency inverters and motor starters

i Information

Programming, program transfer to the device (upload) and storage take place exclusively via the software NORDCON.

11.1.1 Specification of the PLC

Function	Specification			
Standard	Based on IEC 61131-3			
Language	Instruction List (IL, AWL), Structured Text (ST)			
Task	A cyclic task, program call-up every 5 ms			
Computing power	≈ 200 IL commands per 1 ms			
Program memory	SK 500P SK 550P SK 520E SK 545E SK 200E SK 235E SK 250E-FDS SK 280-FDS SK 300P SK 350P		SK 190E SK 180E	SK 175E-FDS SK 155E-FDS
	8128 bytes for markers, functions and the PLC program		2032 bytes for markers, functions and the PLC program	2028 bytes for markers, functions and the PLC program
Max. possible number of commands	 ≈ 2580 commands ≈ 660 commands ≈ 660 commands Note: This is an average value. Frequent use of markers, process data and functions considerably reduces the possible number of lines. The current resource consumption is displayed in the message window (
Freely accessible CAN mailboxes	20 (except for SK 300P SK 350P)			
Supported devices	NORDAC <i>PRO</i> SK SK SK	SK 5xxP SK 54xE SK 53xE/SK 52xE		Firmware V3.0 and above
	NORDAC ON/ON+ SK	SK 3xxP		
	NORDAC FLEX SK	SK 2xxE		Firmware V2.0 and above
	NORDAC <i>LINK</i> SK SK	SK 1x5E-FDS SK 2x0E-FDS		
	NORDAC BASE SK	SK 1x0E		

11.1.2 PLC structure

11.1.2.1 Memory

The PLC memory is divided into the program memory and the marker memory. Apart from the variables, the instances of function modules (FM) are also stored in the area of the marker memory. An instance is a memory area in which all internal input and output variables of a function module are stored. Any declaration of a function module requires a separate instance. The boundary between the program memory and the marker memory is determined dynamically, depending on the size of the marker area.

In the marker memory, two different classes are stored in the section for the variables:

[VAR]

Memory variable for storing auxiliary information and states. Variables of this type are reinitialised every time the PLC starts. The memory content is retained during the cyclic sequence of the PLC.

[VAR_ACCESS]

Used to read in and describe process data (inputs, outputs, setpoints, etc.) of the frequency inverter. These values are regenerated with every PLC cycle.

11.1.2.2 Process image

The frequency inverter provides many physical quantities such as torque, speed, position, inputs or outputs. These quantities are divided into actual values and setpoints. They can be loaded and influenced in the process image of the PLC. The required process values must be defined in the list of variables under class VAR_ACCESS. With every PLC cycle, all of the frequency inverter process data defined in the list of variables is read in anew. At the end of each PLC cycle, the writable process data is transferred back to the frequency inverter.

Figure 25: PLC cycle

Because of this sequence, it is important to program a cyclic program sequence. Programming loops in order to wait for certain events (e.g. change of level at an input) does not produce the required result. This behaviour is different in the case of function modules, which access process values. Here, the process values are read on call-up of the function module and the process values are written immediately when the function module is terminated.

(1) Information

When using the Motion Control function modules MC_Power, MC_Reset, MC_MoveVelocity, MC_Move, MC_Home or MC_Stop, the process values "PLC_Control_Word" and "PLC_Set_Val1" to "PLC_Set_Val5" must not be used. Otherwise, the values in the list of variables would always overwrite the changes to the function module.

11.1.2.3 Program task

Program execution in the PLC is carried out as a single task. The task is cyclically called every 5 ms, where its maximum processing time is 3 ms. If a longer program cannot be executed during this period, program execution is interrupted and continued in the next 5 ms task.

11.1.2.4 Setpoint processing

The inverter has a variety of setpoint sources, which are linked via several parameters to form a resulting setpoint for the frequency inverter.

Figure 26: Linking different setpoint sources to form a resulting setpoint

If the PLC is activated (**P350 = 1**), preselection of setpoints from external sources (main setpoints) is carried out via parameters **P509** and **P510 [-01]**. A final decision on which setpoints are processed by the PLC or by the values coming from parameters **P509** and **P510 [-01]** is made via parameter **P351**. A mixture of both is also possible. No changes to the 2nd setpoints (**P510 [-02]**) are associated with the PLC function. All 2nd setpoint sources and the PLC transfer their 2nd setpoints to the frequency inverter with equal priority.

11.1.2.5 Data processing via accumulator

The accumulator forms the central processing unit of the PLC. Almost all IL commands only function in association with the accumulator. The PLC from NORD has three accumulators. These are the 32-bit Accumulator 1 and Accumulator 2, and the current result (AE) in BOOL format. The AE is used for all Boolean loading, storage and comparison operations. If a Boolean value is loaded, it is displayed in the AE. Relational operators deliver the result to the AE and conditional jumps are triggered due to the AE. Accumulator 1 and Accumulator 2 are used for all operators in data format BYTE, INT and DINT. Accumulator 1 is the main accumulator, while Accumulator 2 is only used for auxiliary functions. All loading and storage operators are handled by Accumulator 1. All arithmetic operators save their results

in Accumulator 1. With each load command, the contents of Accumulator 1 are moved to Accumulator 2. A subsequent operator can then link or evaluate the two accumulators and save the result in Accumulator 1 again, which in the following will generally be referred to as the "accumulator".

11.1.3 Functional scope

The PLC supports a wide range of operators, functions and standard function modules defined in IEC 1131-3. A detailed description can be found in the following chapters. Additionally supported function modules are also explained.

11.1.3.1 Motion Control Lib

The Motion Control Lib is based on the PLCopen specification "Function blocks for motion control". This mainly contains function modules, which are used to travel the drive. In addition, function modules for reading and writing device parameters are also provided.

11.1.3.2 Electronic gear unit with flying saw

The frequency inverter is equipped with the functions Electronic gear unit (synchronism in positioning mode) and Flying saw. Via these functions, the inverter can travel with another drive with angular synchronism. With the additional function Flying saw, it is also possible to synchronise to the precise position of a travelling drive unit. The operating mode Electronic gear unit can be started and stopped at any time. This enables a combination of conventional position control with its travel commands and gear unit functions. For the gear unit function, a NORD frequency inverter with internal CAN bus is required on the master axis.

11.1.3.3 Visualisation

Visualisation of the operating status and the parameterisation of the frequency inverter are possible with the aid of a ControlBox or a ParameterBox. Alternatively, the CANopen master function of the PLC also allows the use of CAN bus panels for information display.

ControlBox

The simplest variant for visualisation is the ControlBox. The 4-digit display and the keyboard status can be accessed via two process values. This allows the quick creation of simple HMI applications. In order for the PLC to access the display, parameter **P001 = 40** must be set. Another special feature is that the parameter menu is no longer accessible via the arrow keys. Instead, the "On" and "Enter" keys must be pressed simultaneously.

Parameter Box

In visualisation mode, each of the 80 characters in the ParameterBox display (4 rows of 20 characters) can be set via the PLC. It is possible to transfer both numbers and texts. In addition, keyboard entries on the ParamterBox (P-Box) can be recorded by the PLC. This enables the implementation of more complex HMI functions (display of actual values, screen change, transfer of setpoints, etc.). The P-Box display is accessed via function modules in the PLC. Visualisation takes place via the operating value display of the P-Box. The content of the operating value display is set via P-Box parameter **P1003**. This parameter can be found under the main menu item "Display". **P1003** must be set to "PLC display". After this, the operating value display can be selected again by means of the right and left arrow keys. The display controlled by the PLC is now displayed. This setting remains in effect even after switching on again.

11.1.3.4 Process controller

The process controller is a PID-T1 controller with a limited output size. With the aid of this function module, it is possible to simply set up complex control functions in the PLC, by means of which various

processes, for example pressure regulation, can be implemented in a considerably more elegant manner than with the commonly used two-step controllers.

11.1.3.5 CANopen communication

In addition to the standard communication channels, the PLC provides further possibilities for communication. Via the CANopen field bus interface of the frequency inverter or the system bus, it can establish additional communication relations to other devices. The protocol used for this is CANopen. The communication relations are restricted to PDO data transfer and NMT commands. The standard CANopen frequency inverter communication via SDO, PDO1, PDO2 and broadcast remains unaffected by this PLC function.

PDO (Process Data Objects)

Other frequency inverters can be controlled and monitored via PDO. However, it is also possible to connect devices from other suppliers to the PLC. These may be IO modules, CANopen encoders, panels, etc. With this, the number of inputs/outputs of the frequency encoder can be extended as far as is required; analogue outputs would then also be possible.

NMT (Network Management Objects)

All CANopen devices must be set to the CANopen bus state "Operational" by the bus master. PDO communication is only possible in this bus state. If there is no bus master in the CANopen field bus, this must be performed by the PLC. The function module FB_NMT is available for this purpose.

11.2 Creation of PLC programs

Creation of the PLC programs is carried out exclusively via the PC program NORDCON. The PLC editor is opened either via the menu item "File/New/PLC program" or via the symbol **11**. This button is only active if a device with PLC functionality forms the focus of the device overview.

11.2.1 Loading, saving & printing

The loading, saving and printing functions can be triggered via the respective entries in the main menu or toolbars. Upon opening, it is recommended to set the file type "PLC Program" (*.awlx, *.nstx) in the "Open" dialogue. This way, the system only displays files the PLC editor can read. For saving the created PLC program, the PLC editor window must be active. Clicking "Save" or "Save as..." saves the PLC program. When using the "Save as..." operation, this can also be seen from the file type entry (Program PLC (*.awlx*.nstx)). To print the PLC program, the respective PLC window must also be active. The printout is then started via "File -> Print" or via the respective symbol.

PLC programs can also be saved in the form of a backed-up PLC program. For this purpose, the user has to set the file type as "Backed-up AWL files" or "Backed-up ST files" in the file selection dialogue. Afterwards, the PLC program is saved in an encrypted (*.awls or *.nsts) and in a normal (*.awlx or *.nstx) version. The encrypted PLC program can only be transferred to the device.

11.2.2 Editor

The PLC Editor is divided into four different windows.

11 PLC (Programmable Logic Controller)

		× - • ×
File Start Denice Project	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\$ O Q
Control	Debugging Options	
	Ell Deshtoord × O Control (50) 55xP 1 10/0230/01 × Persentence - (50) 55xP 1 10/0230/01 × Persentence - (50) 55xP 1 10/0230/01 ×	
E 1001 55vP 1 1kW/230V/1	2 (* It will show the values of Ain1 and Ain2	(x) Variables □ # ×
i teoloone rinenteoorti	3 (* And triggers at Dint - 4	Class Name Type Individue Attribute Connect
O Centrol	5 (* The startup text for the Phon can be pre set using	VAR Text_Aus STRAG Fail CONSTANT
E Parametrika	6 (* PLC -> PLC configuration -> Parameter box.	VAR Westerng F8_stragt/sRex
	7 (* The FLC display option meeds to be enabled here	VAR WretValue FB_DR/TIsPBox
	9 (* In the ParameterBox the display has to be enabled using	O VAR_ACCESS _S_STAM_ADDAL_ADVA MT
	10 (* Dimplay -> P1003 -> PLC dimplay	VAR_ACCESS _T_Analog_reput #IT
	12 (* 2360 = 1 *)	VAR De_OW NT
	13	@ VAR De_Diff BIT
	15	VAR De RT
	16 (* set display positions *)	
	 18 ST WriteValue.Mode (* 0:Des 1:Din 2:Nex *) 	
	• 15 LD 0	
	 JUST WITCHALDE, NOW (* NOW *) JLD 5 	
	 22 57 WriteValue.Column (* Column *) 	
	 33 LD 2 24 ST MriteValue, Point /* 1 digit precision *) 	
	• 25 LD 4	
	 36 ST WriteValue.Length (* String length *) 	
	28 (* send analog input 1 *)	e 💷 🤉
	• 29 LD 7 Analog input	Watch list
	 30 Int violation Value 	Name Value Diplay format
	32	E Debug ket
	33 (* generate 0 → 1 transition for updating the display *) • 34 (D FALSE	- At - Decinal
	 35 ST WriteValue, Enable 	- Accu 1 - Decimal
	 36 CAL WriteValue 31 to Ture 	Amu 2 - Deonai
	 38 5T WriteValue.Enable 	-3,3446,00 Bray
	• 39 CAL WriteValue	- Weth let
	41 (* set position for the second value *)	
	• 12 10 1	
	• 53 ST WITEGVALGE HOW (* NOW *) 44	
	45 (* send analog input 2 *)	
	 46 LD 8 Analog input2 47 Just to dust 	
	C International Action	s U mean lat : Walch-Drawports
	Ran SK SkoP (AWL)	
	🖑 Messages	4 ×
	Importance Timestamp Pace Category D Message	
	() Information 10.09.2024 07:55:49:804 PLC - (20) 55:4P 1, WW220V/1 PLC 10.09.2024 07:55:49 NORDCON PLC-Complex	
	Onternation 10.09.2024 07 55.40.969 PLC PLC PLC AVXL complex started	
	C42850mmation 10.09.2024 07.25.30.013 PLC - 200 554P 1.3439230V/1 PLC AVV, Congael Trianed without errors	
	(i) information 10.09.2024 07.55.50.075 R.C - 100 55aP 1 (kill/230V/1 R.C Resources (RAM/CODE/TOTAL): 42/290/428 Memory usage 5.7%	

The individual windows are described in more detail in the following sections.

11.2.2.1 Variables and FB declaration

All the variables, process values and function blocks which are required by the program are declared in this window.

Class	Name	Туре	Init-value	Attribute	Comment
VAR	Takt_Flag	BOOL			
VAR	Time	TON			
VAR_ACCESS	_0_Set_digital_output	INT			

Variables

Variables are created by setting the Class "VAR". The Name of the variable can be freely selected. In the Type field, a selection between BOOL, BYTE, INT and DINT can be made. A starting initialisation can be entered under Init-Value.

Process values

These are created by selecting the entry "VAR_ACCESS" under Class. The Name is not freely selectable and the field Init-Value is barred for this type.

Function modules

The entry "VAR" is selected under Class. The Name for the relevant instance of the function module (FB) can be freely selected. The required FB is selected under Type. An Init-Value cannot be set for function modules.

All menu items which relate to the variable window can be called up via the context menu. Via this, entries can be added and deleted. Variables and process variables for monitoring (Watchdog function) or debugging (Breakpoint) can be activated.

11.2.2.2 Input window

The input window is used to enter the program and to display the AWL program. It is provided with the following functions:

- Highlight syntax
- Bookmark
- Declaration of variables
- Debugging

Syntax Highlighting

If the command and the variable which is assigned to it are recognised by the Editor, the command is displayed in blue and the variable in black. As long as this is not the case, the display is in thin black italics.

Bookmarks

As programs in the Editor may be of considerable length, it is possible to mark important points in the program with the function Bookmark and to jump directly to these points. The cursor must be located in the relevant line in order to mark it. Via the menu item "Switch bookmark" (right mouse button menu) the line is marked with the required bookmark. The bookmark is accessed via the menu item "Go to bookmark".

Declaring Variables

Via the Editor menu "Add Variable" (right mouse button) new variables can be declared using the Editor.

Debugging

For the Debugging function, the positions of the breakpoints and watchpoints are specified in the Editor. This can be done via the menu items "Switch breakpoint" (Breakpoints) and "Switch monitoring point" (Watchpoints). The position of Breakpoints can also be specified by clicking on the left border of the Editor window. Variables and process values which are to be read out from the frequency inverter during debugging must be marked. This can be done in the Editor via the menu items "Debug variable" and "Watch variable". For this, the relevant variable must be marked before the required menu item is selected.

11.2.2.3 Watch and Breakpoint display window

This window has two tabs, which are explained below.

Holding points

This window displays all of the breakpoints and watchpoints which have been set. These can be switched on and off via the checkboxes and deleted with the "Delete key". A corresponding menu can be called up with the right mouse button.

Observation list

This displays all of the variables which have been selected for observation. The current content is displayed in the Value column. The display format can be selected with the Display column.

11.2.2.4 PLC message window

All PLC status and error messages are entered in this window. In case of a correctly translated program the message "Translated without error" is displayed. The use of resources is shown on the line below this. In case of errors in the PLC program, the message "Error X" is displayed. The number of errors is shown in X. The following lines show the specific error message in the format:

[Line number]: Error description

11.2.3 Transfer PLC program to device

There are several ways to transfer a PLC program to the device.

Transfer PLC program directly:

- 1. Select device in the project tree
- 2. Open popup menu (press the right mouse button)
- 3. Execute function "Transfer PLC program to device"
- 4. Select file in the file selection dialogue and press "Open"

Transfer PLC program with PLC editor (offline):

- 1. Open PLC program (File->Open)
- 2. Connect PLC editor with a device (PLC->Connect)
- 3. Translate PLC program
- 4. Transfer PLC program to device

Transfer PLC program with PLC editor (online):

- 1. Select device in the project tree
- 2. Open PLC editor 龖
- 3. Open PLC program
- 4. Import the file into online view
- 5. Translate PLC program
- 6. Transfer PLC program to device

Information SK 1xxE-FDS – limited number of writing cycles

In the devices SK 155E-FDS / SK 175E-FDS flash is used as a storage medium. The number of write cycles of Flash memory is very limited. By default, the program is loaded into the RAM. It can then be started and tested. If the PLC is then restarted, the program must be re-loaded to the device to initialize the PLC variables. Should the program be permanently stored in the device, you must execute the function "Transfer and store program to device".

11.2.4 Debugging

As programs only rarely function the very first time, the PLC provides several possibilities for finding faults. These possibilities can be roughly divided into two categories, which are described in detail below.

11.2.4.1 Observation points (Watchpoints)

The simplest debugging variant is the Watchpoint function. This provides a rapid overview of the behaviour of several variables. For this, an observation point is set at an arbitrary point in the program. When the PLC processes this line, up to 5 values are saved and displayed in the observation list (window "Observation List") The 5 values to be observed can be selected in the entry window or in the variable window using the context menu.

i Information

In the current version, variables of functions cannot be added to the watch list!

11.2.4.2 Holding points (Breakpoints)

Via holding points it is possible to deliberately stop the PLC program at a specific line of the program. If the PLC runs into a Breakpoint, the AE, Accumulator 1 and Accumulator 2 are read out, as well as all variables which have been selected via the menu item "Debug variables". Up to 5 Breakpoints can be

set in a PLC program. This function is started via the symbol. The program now runs until a holding point is triggered. Further actuation of the symbol bar allows the program to continue running until it reaches the next holding point. If the program is to continue running, the symbol is actuated.

11.2.4.3 Single Step

With this debugging method it is possible to execute the PLC program line for line. With each individual step, all the selected variables are read out of the PLC of the device and displayed in the "Observation list" window. The values to be observed can be selected in the input window or the variable window by means of the right mouse button menu. The condition for debugging in single steps is that at least one

11 PLC (Programmable Logic Controller)

Breakpoint has been set before starting debugging. The debugging mode is switched on by actuating

the symbol. Only when the program has run into the first breakpoint, can the following lines be

debugged via the symbol. Some command lines contain several individual commands. Because of this, two or more individual steps may be processed before the step indicator jumps forward in the entry window. The actual position is shown by a small arrow in the left PLC Editor window. When the

Symbol is actuated, the program continues running until the next holding point. If the program is

to continue running, the 🕨 symbol is actuated.

11.2.5 PLC configuration

The PLC configuration dialogue is opened via the symbol. Here, basic settings for the PLC can be made, which are described in further detail below.

Cycle time monitoring

This function monitors the maximum processing time for a PLC cycle. With this, unintended continuous program loops in the PLC program can be caught. Error E22.4 is triggered in the frequency inverter if this time is exceeded.

Allow ParameterBox function module

If visualisation via the ParameterBox is to be performed in the PLC program, this option must be enabled. Otherwise the corresponding function blocks generate a Compiler Error when the frequency inverter is started.

Invalid control data

The PLC can evaluate control words which are received from the possible bus systems. However, the control words can only get through if the bit "PZD valid" (Bit 10) is set. This option must be activated if control words which are not compliant with the USS protocol are to be evaluated by the PLC. Bit 10 in the first word is then no longer queried.

Do not pause the system time at holding point

The system time is paused during debugging if the PLC is in the holding point or in single step mode. The system time forms the basis for all timers in the PLC. This function must be activated if the system time is to continue running during debugging.

11.3 Function blocks

Function blocks are small programs, which can save their status values in internal variables. Because of this, a separate instance must be created in the NORDCON variable list for each function block. E.g. if a timer is to monitor 3 times in parallel, it must also be set up three times in the list of variables.

i Information

Detecting a signal edge

In order for the following function blocks to detect an edge at the input, it is necessary for the function call-up to be carried out twice with different statuses at the input.

11.3.1 CANopen

The PLC can configure, monitor and transmit on PDO channels via function blocks. The PDO can transmit or receive up to 8 bytes of process data via a PDO. Each of these PDOs is accessed via an individual address (COB-ID). Up to 20 PDOs can be configured in the PLC. For simpler operation, the COB-ID is not entered directly. Instead, the device address and the PDO number are communicated to the FB. The resulting COB-ID is determined on the basis of the Pre-Defined Connection Set (CiA DS301). This results in the following possible COB-IDs for the PLC.

Transm	it PDO	Receive PDO		
PDO	COB-ID	PDO	COB-ID	
PDO1	200h + Device address	PDO1	180h + Device address	
PDO2	300h + Device address	PDO2	280h + Device address	
PDO3	400h + Device address	PDO3	380h + Device address	
PDO4	500h + Device address	PDO4	480h + Device address	

NORD Frequency inverter use PDO1 to communicate process data. PDO2 is only used for setpoint/actual value 4 and 5.

11.3.1.1 Overview

Function module	Description
FB_PDOConfig	PDO configuration
FB_PDOSend	Transmit PDO
FB_PDOReceive	Receive PDO
FB_NMT	Enable and disable PDO

11.3.1.2 FB_NMT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х		Х	Х	Х	Х

After a *Power UP* all CAN participants are in the Pre-Operational bus state. In this state, they can neither transmit nor receive a PDO. In order for the PLC to be able to communicate with other participants on the CAN bus, these must be set to the Operational state. Usually, this is realised by the bus master. If there is no bus master, this task can be taken over by the FB_NMT. The states of all participants connected to the bus can be controlled via the inputs **PRE**, **OPE** or **STOP**. The inputs are applied with a positive flank on **EXECUTE**. The function must be called until the output **DONE** or **ERROR** has been set to 1.

If the **ERROR** is set to 1, there is either no 24 V supply to the RJ45 CAN socket of the inverter, or the CAN driver of the inverter is in the status *Bus off*. With a negative flank on **EXECUTE**, all outputs are reset to 0.

11 PLC (Programmable Logic Controller)

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
EXECUTE	Execute	BOOL	DONE	NMT command is transmitted	BOO L	
PRE	Set all participants to Pre- Operational state	BOOL	ERROR	Error in FB	BOO L	
OPE	Set all participants to Operational state	BOOL				
STOP	Set all participants to Stopped state	BOOL				

11.3.1.3 FB_PDOConfig

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х		Х	Х	Х	Х

The PDOs are configured with this FB. With an instance of this function, all of the required PDOs can be configured. The FB must only be called up once for each PDO. Up to 20 PDOs can be set up. Each PDO has its own parameterisation. The assignment of the PDOs in the other CANopen FBs is carried out via the Messagebox number. The **TARGETID** represents the address of the device. With NORD Frequency inverter, it is set in P515 or via DIP switches. The required Messagebox number is entered under PDO (see Introduction). **LENGTH** specifies the transmission length of a PDO. The transmission/reception direction is specified via **DIR**. The data is adopted with a positive flank on the **EXECUTE** input. The **DONE** output can be queried immediately after the call-up of the FB. If **DONE** is set to 1, the PDO channel has been configured. If **ERROR** = 1, there was a problem, whose precise cause is stored in **ERRORID**. With a negative flank on **EXECUTE**, all outputs are reset to 0.

Transmit PDO		Monitored PDO		
PDO	COB-ID	PDO	COB-ID	
PDO1	200h + Device address	PDO1	180h + Device address	
PDO2	300h + Device address	PDO2	280h + Device address	
PDO3	400h + Device address	PDO3	380h + Device address	
PDO4	500h + Device address	PDO4	480h + Device address	
PDO5	180h + Device address	PDO5	200h + Device address	
PDO6	280h + Device address	PDO6	300h + Device address	
PDO7	380h + Device address	PDO7	400h + Device address	
PDO8	480h + Device address	PDO8	500h + Device address	

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
EXECUTE	Execute	BOOL	DONE	PDO configured	BOO L	
NUMBER	Messagebox number Value range = 0 to 19	BYTE	ERROR	Error in FB	BOO L	
TARGETID	Device address Value range = 1 to 127	BYTE	ERRORID	Error code	INT	
PDO	PDO Value range = 1 to 4	BYTE				
LENGTH	PDO length Value range = 1 to 8	BYTE				
DIR	Transmit or receive Transmit = 1 / Receive = 0	BOOL				
ERRORID	Explanation					
0	No error					
1800h	Number value range exceeded					
1801h	TARGETID value range excee	ded				
1802h	PDO value range exceeded					
1803h	LENGT value range exceeded					

i Information

No dual use of the CAN ID

CAN IDs already used by the device may not be parameterised!

Relevant reception addresses:

- CAN ID = 0x180 + P515[-01] PDO1
 CAN ID = 0x180 + P515[-01]+1 CAN ID for absolute encoder
- CAN ID = 0x280 + P515[-01] PDO2

Relevant transmission addresses:

•	CAN ID = 0x200 + P515[-01]	PDO1
•	CAN ID = 0x300 + P515[-01]	PDO2

Example in ST:

```
(* Configure PDO *)
PDOConfig(
    Execute := TRUE,
    (* Configure Messagebox 1 *)
   Number := 1,
    (* Set CAN node number *)
   TargetID := 50,
    (* Select PDO (Standard for PDO1 control word, setpoint1, setpoint2, setpoint3) *)
   PDO := 1,
    (* Specify length of data (Standard for PDO1 is 8 *)
   LENGTH := 8,
    (* Transmit *)
    Dir := 1);
or
(* Configure PDO *)
PDOConfig(
   Execute := TRUE,
    (* Configure Messagebox 1 *)
   Number := 2,
    (* Set CAN node number *)
    TargetID := 50,
    (* Select PDO (Standard for PDO2 setpoint4, setpoint5 SK540E) *)
    PDO := 2,
    (* Specify length of data (Standard for PDO2 is 4 *)
    LENGTH := 4,
    (* Transmit *)
    Dir := 1);
or
(* Configure PDO *)
PDOConfig(
   Execute := TRUE,
    (* Configure Messagebox 2 *)
   Number := 2,
    (* Set CAN node number *)
    TargetID := 50,
   (* Select PDO (Standard for PDO1 status word, actual value1, actual value2, actual
    value3) *)
    PDO := 1,
    (* Specify length of data (Standard for PDO1 is 8 *)
    LENGTH := 8,
    (* Receive *)
    Dir := 0);
```


11.3.1.4 FB_PDOReceive

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х		Х	Х	Х	Х

This FB monitors a previously configured PDO channel for incoming messages. Monitoring starts if the **ENABLE** input is set to 1. After the function has been called up, the **NEW** output must be checked. If it changes to 1, a new message has arrived. The **NEW** output is deleted with the next call-up of the function. The data which have been received are shown in **WORD1** to **WORD4**. The PDO channel can be monitored for cyclical reception via **TIME**. If a value between 1 and 32767 ms is entered in **TIME**, a message must be received during this period. Otherwise, the FB changes into the error state (**ERROR** = 1). This function can be disabled with the value 0. The monitoring timer runs in steps of 5 ms. In case of error, **ERROR** is set to 1. In this case, **DONE** is 0. The corresponding error code is then valid in **ERRORID**. With a negative flank on **ENABLE**, **DONE**, **ERROR** and **ERRORID** are reset.

VAR_INPU	т		VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
ENABLE	Execute	BOOL	NEW	New PDO received	BOO L	
NUMBER	Messagebox number Value range = 0 to 19	BYTE	ERROR	Error in FB	BOO L	
TIME	Watchdog function Value range = 0 to 32767 0 = Disabled 1 to 32767 = Monitoring time	INT	ERRORID	Error code	INT	
			MONITOR	The output will be set on receiving a PDO message (MONITOR = TRUE). If no new PDO message is received or the module was deactivated during the watchdog time, the output will be reset (MONITOR = FALSE).	BOO L	
			WORD1	Received data Word 1	INT	
			WORD2	Received data Word 2	INT	
			WORD3	Received data Word 3	INT	
			WORD4	Received data Word 4	INT	

ERRORID	Explanation
0	No error
1800h	Number value range exceeded
1804h	Selected box is not configured correctly
1805h	No 24 V for bus driver or bus driver is in "Bus off" state
1807h	Reception timeout (Watchdog function)

i Information

PLC cycle time

The PLC cycle is about 5 ms, i.e. with one call-up of the function in the PLC program, a CAN message can only be read every 5 ms. Messages may be overwritten if several messages are transmitted in quick succession.

Example in ST:

```
IF bFirstTime THEN
  (* Set device to Pre-Operational status *)
  NMT (Execute := TRUE, OPE := TRUE);
  IF not NMT.Done THEN
   RETURN;
  END_IF;
  (* Configure PDO *)
  PDOConfig(
    Execute := TRUE,
    (* Configure Messagebox 2 *)
    Number := 2,
    (* Set CAN node number *)
TargetID := 50,
    (* Select PDO (Standard for PDO1 status word, actual value1, actual value2, actual
value3) *)
    PDO := 1,
    (* Specify length of data (Standard for PDO1 is 8 *)
    Length := 8,
    (* Receive *)
    Dir := 0);
END_IF;
(* Read out status and actual values *)
PDOReceive(Enable := TRUE, Number := 2);
IF PDOReceive.New THEN
 State := PDOReceive.Word1;
  Sollwert1 := PDOReceive.Word2;
  Sollwert2 := PDOReceive.Word3;
  Sollwert3 := PDOReceive.Word4;
END IF
```


11.3.1.5 FB_PDOSend

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х		Х	Х	Х	Х

With this FB, PDOs can be transmitted on a previously configured channel. These can be transmitted once or cyclically. The data to be transmitted is entered in **WORD1** to **WORD4**. PDOs can be transmitted irrespective of the frequency inverter's CANopen state. The previously configured PDO channel is selected via **NUMBER**. The data to be transmitted is entered in **WORD1** to **WORD4**. Single (setting = 0) or cyclical transmission can be selected via **CYCLE**. The PDO is sent with a positive flank on **EXECUTE**. If **DONE** = 1, all entries were correct and the PDO is transmitted. If **ERROR** = 1, there was a problem. The precise cause is stored in **ERRORID**. All outputs are reset with a negative flank on **EXECUTE**. The time base of the PLC is 5 ms; this also applies for the **CYCLE** input. Only transmission cycles with a multiple of 5 ms can be implemented.

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
EXECUTE	Execute	BOO L	DONE	PDO transmitted = 1	BOO L	
NUMBER	Messagebox number Value range = 0 to 19	BYTE	ERROR	Error in FB	BOO L	
CYCLE	Transmission cycle Value range = 0 to 255 0 = Disabled 1 to 255 = Transmission cycle in ms	BYTE	ERRORID	Error code	INT	
WORD1	Transmission data Word 1	INT				
WORD2	Transmission data Word 2	INT				
WORD3	Transmission data Word 3	INT				
WORD4	Transmission data Word 4	INT				
ERRORID	Explanation					
0	No error					
1800h	Number value range exceeded					
1804h	Selected box is not configured co	orrectly				
1805h	No 24 V for bus driver or bus driv	/er is in '	'Bus off" state			

If **DONE** changes to 1, the message to be transmitted has been applied by the CAN module, but has not yet been sent. The actual transmission runs in parallel in the background. If several messages are now to be transmitted directly in sequence via an FB, it may be the case that the previous message has not yet been transmitted upon the new call-up. This can be seen by the fact that neither the **DONE** nor the **ERROR** signal have been set to 1 after the **CAL** call-up. The **CAL** call-up can be repeated until one

11 PLC (Programmable Logic Controller)

of the two signals changes to 1. If several different CAN IDs are to be written on via a single FB, this is possible with a new configuration of the FB. However, this must not be done in the same PLC cycle as the transmission. Otherwise, there is a danger that the message to be transmitted will be deleted during configuration by the FB_PDOConfig.

Example in ST:

```
IF bFirstTime THEN
  (* Set device to Pre-Operational status *)
  NMT (Execute := TRUE, OPE := TRUE);
  IF not NMT.Done THEN
   RETURN:
  END IF;
  (* Configure PDO*)
  PDOConfig(
    Execute := TRUE,
    (*Configure Messagebox 1*)
    Number := 1,
    (* Set CAN node number *)
    TargetID := 50,
    (* Select PDO (Standard for PDO1 status word, actual value1, actual value2, actual
    value3) *)
    PDO := 1,
    (*Specify length of data (Standard for PDO1 is 8*)
    LENGTH := 8,
    (* Transmit *)
    Dir := 1);
  IF not PDOConfig.Done THEN
    RETURN;
  END IF;
  (* Transmit PDO - Set Device control word to status "Ready to switch-on" *)
  PDOSend(Execute := TRUE, Number := 1, Word1 := 1150, Word2 := 0, Word3 := 0, Word4 := 0);
  IF NOT PDOSend.Done THEN
   RETURN;
  END IF;
  PDOSend(Execute := FALSE);
  bFirstTime := FALSE;
END_IF;
CASE State OF
  0:
      (* Has digital input 1 been set? *)
         _5_State_digital_input.0 THEN
      ΤF
        (*Transmit PDO - Set Device control word to status "Ready to switch-on" *)
        PDOSend(Execute := TRUE, Number := 1, Word1 := 1150, Word2 := 0, Word3 := 0,
         Word4 := 0);
        State := 10;
        RETURN;
      END IF;
      (*Has digital input 2 been set? *)
      IF _5_State_digital_input.1 THEN
        (* Transmit PDO - Enable device with 50% max. frequency *)
        PDOSend(Execute := TRUE, Number := 1, Word1 := 1151, Word2 := 16#2000, Word3 := 0,
         Word4 := 0;
        State := 10;
        RETURN;
      END IF;
  10:
      PDOSend:
      IF PDOSend.Done THEN
       PDOSend(Execute := FALSE);
        State := 0;
      END IF;
END CASE;
```


11.3.2 Electronic gear unit with flying saw

For the electronic gear unit ("angularly synchronised operation") and the sub-function flying saw there are two function blocks which enable control of these functions. In addition, various parameters must be set for the correct execution of the two function blocks in the master and slave frequency inverters. An example of this is shown in the following table (explained by the example of a SK 540E).

Master FI			Slave Fl			
Parameter	Settings Description		Parameter	Settings	Description	
P502[-01]	20	Setpoint frequency according to freq. Ramp	P509	10 *	CANopen Broadcast *	
P502[-02]	15	Actual position in incl. High word	P510[-01]	10	CANopen Broadcast	
P502[-03]	10	Actual position in incl. Low word	P510[-02]	10	CANopen Broadcast	
P503	3	CANopen	P505	0	0,0 Hz	
P505	0	0.0 Hz	P515[-02]	P515[-03] _{Master}	Broadcast Slave address	
P514	5	250 kBaud (min. 100 kBaud)	P546[-01]	4	Frequency addition	
P515[-03]	P515[-02] Slave	Broadcast master address	P546[-02]	24	Setpoint pos. Incl. High Word	
			P546[-03]	23	Setpoint pos. Incl. Low Word	
			P600	1.2	Position control ON	
			Only for FB_	_Gearing		
			P553[-01]	21	Position setpoint pos. Low word	
			P553[-02]	22	Position setpoint pos. High word	
* (P509) mu	ist not necess	arily be set to {10} "CANopen	Broadcast".	However, in this o	case the Master (P502 [-	

(P509) must not necessarily be set to {10} "CANopen Broadcast". However, in this case the Master (P502 01]) must be set to {21} "Actual frequency without slip".

Information Actual position – transmission format

The actual position of the master MUST be communicated in "Increments" (Inc) format.

11.3.2.1 Overview

Function module	Description
FB_Gearing	FB for simple gear unit function
FB_FlyingSaw	FB for gear unit function with Flying Saw

11.3.2.2 FB_FlyingSaw

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	On+	Х	Х	Х	

The flying saw function is an extension of the gear unit function. With the aid of this function it is possible to precisely synchronise to a running drive unit. In contrast to FB_Gearing, synchronisation is relative, i.e. the slave axis moves synchronously to the position of the master which applied at the start of the "Flying Saw". The synchronisation process is illustrated in the figure below.

If the function is started, the slave frequency inverter accelerates to the speed of the master axis. The acceleration ramp is specified via the **ACCELERATION** path. At low speeds, the ramp is flatter and at high speeds, there is a steep ramp for the slave frequency inverter. The acceleration path is stated in revolutions (1000 = 1.000 rev.) if P553 is specified as the setpoint position. If the setpoint position INC is used for P553, the acceleration path is specified in increments.

If the initiator, with the distance saved in **ACCELERATION**, is set in front of the position of the slave drive, the slave is precisely synchronised with the triggering position from the master drive.

The FB must be switched on via the **ENABLE** input. The function can be started either via the digital input (P420[-xx]=64, *Start flying saw*) or via **EXECUTE**. The frequency inverter then accelerates to the speed of the master axis. When synchronisation with the master axis is achieved, the **DONE** output is switched to 1.

Via the **STOP** input or the digital input function P420[-xx] = 77, *Flying saw stopped*, the gear unit function is switched off, the frequency inverter decelerates to 0 Hz and remains at a standstill. Via the **HOME** input, the inverter is made to move to the absolute position 0. After termination of the **HOME** or **STOP** command, the relevant allocated output is active. The gear unit function can be restarted by reactivating **EXECUTE** or the digital input. With the digital input function (P420[-xx] = 63, *Synchronous mode off*), the gear unit function can be stopped and then moved to the absolute position 0.

If the function is interrupted by the MC_Stop function, **ABORT** is set to 1. In case of error, **ERROR** is set to 1 and the error code is set in **ERRORID**. These three outputs are reset if **ENABLE** is switched to 0.

VAR_INPUT		VAR_OUTPUT						
Input	Explanation	Туре	Output	Explanation	Туре			
ENABLE	Enable	BOOL	VALID	Specified set point frequency reached	BOOL			
EXECUTE	Start of synchronisation	BOOL	DONEHOME	Home run completed				
STOP	Stop synchronisation	BOOL	DONESTOP	Stop command executed				
НОМЕ	Moves to position 0	BOOL	ABORT	Command cancelled	BOOL			
ACCELERATION	Acceleration path (1 rev. = 1,000)	DINT	ERROR	Error in FB	BOOL			
			ERRORID	Error code	INT			
ERRORID	Explanation	-	-		-			
0	No error							
1000h	FI is not enabled	FI is not enabled						
1200h	Position control is not ac	ctivated						

11.3.2.3 FB_Gearing

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	On+	Х	Х	Х	

Via function module FB_Gearing, the position and speed of the frequency inverter can be synchronised to that of a master inverter. The slave which uses this function always follows the movements of the master inverter.

Synchronisation is absolute, i.e. the positions of the slave and the master are always the same.

1 Information

If the slave is switched to gear unit mode at a different position than the master, the slave moves with maximum frequency to the master's position.

If a gear ratio is specified, this also results in a new position when switched on again.

The position value to which synchronisation is carried out, as well as the speed, must be transmitted via the Broadcast channel. The function is enabled via the **ENABLE** input. For this, the position control and the output stage must be enabled. The output stage can be enabled, e.g. with the MC_Power function. If **ENABLE** is set to 0, the frequency inverter decelerates to 0 Hz and remains at a standstill. The inverter is now in position control mode again. If MC_Stop is activated, the frequency inverter exits the gear unit mode and the **ABORT** output changes to 1. In case of errors in the FB, **ERROR** changes to 1 and the error cause is indicated in **ERRORID**. By setting **ENABLE** to 0, **ERROR**, **ERRORID** and **ABORT** can be reset.

11 PLC (Programmable Logic Controller)

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
ENABLE	Synchronous mode active	BOOL	VALID	Gear unit function is active	BOOL	
RELATIVE	Relative mode (V2.1 and above)	BOOL	ABORT	Command cancelled	BOOL	
			ERROR	Error in FB	BOOL	
			ERRORID	Error code	INT	
ERRORID	Explanation					
0	No error					
1000h	FI is not enabled					
1200h	Position control is not activate	ed				
1201h	The PLC set value position H	igh is not	parameterised	l		
1202h	The PLC set value position Lo	ow is not p	parameterised			

11.3.3 Motion Control

The Motion Control Lib is based on the PLCopen specification "Function blocks for motion control". It contains function blocks for controlling and moving a frequency inverter and provides access to its parameters. Several settings must be made to the parameters of the device in order for the Motion Blocks to function.

Function blocks	Required settings
MC_MoveVelocity	P350 = PLC active P351 = Main setpoint comes from the PLC P553 [-xx] = Setpoint frequency P600 = Position control (positioning mode) is disabled
MC_MoveAbsolute	P350 = PLC active
MC_MoveRelative	P351 = Main setpoint comes from the PLC
MC_MoveAdditive	P600 = Position control (positioning mode) is enabled In P553 [-xx] (PLC_Setpoints) the setpoint position High Word must be parameterised
MC_Home	In P553 [-xx] (PLC_Setpoints) the setpoint frequency must be parameterised In P553 [-xx] (PLC_Setpoints) the setpoint frequency must be parameterised
MC_Power	P350 = PLC active
MC_Reset	P351 = Control word comes from the PLC
MC_Stop	

i Information

The PLC_Setpoints 1 to 5 and the PLC control word can also be described via process variables. However, if the Motion Control FBs are used, no corresponding process variable may be declared in the table of variables, as otherwise the outputs of the Motion Control FBs would be overwritten.

1 Information

Detecting a signal edge

In order for the following function blocks to detect an edge at the input, it is necessary for the function call-up to be carried out twice with different statuses at the input.

Function blocks	Description
MC_ReadParameter	Reading access to parameters of the device
MC_WriteParameter	Writing access to parameters of the device
MC_MoveVelocity	Move command in speed mode
MC_MoveAbsolute	Move command with specification of absolute position
MC_MoveRelative	Move command with specification of relative position
MC_MoveAdditive	Move command with additive specification of position
MC_Home	Starts a home run
MC_Power	Switches the motor voltage on or off
MC_ReadStatus	Status of the device
MC_ReadActualPos	Reads out the actual position
MC_Reset	Error reset in the device
MC_Stop	Stops all active movement commands

11.3.3.1 MC_Control

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	

This function block is used to control the FI and provides the option of producing the FI control word in a form which is somewhat more detailed than is possible with MC_Power. The FI is controlled via the inputs **ENABLE (ENABLE_RIGHT)**, **ENABLE_LEFT, DISABLEVOLTAGE** and **QUICKSTOP**, please refer to the following table.

11 PLC (Programmable Logic Controller)

Module inp	outs			Frequency inverter behaviour
ENABLE (RIGHT)	ENABLE_ LEFT	QUICKSTOP	DISABLE VOLTAGE	
High	Low	Low	Low	The frequency inverter is switched on (enable right).
х	High	Low	Low	The frequency inverter is switched on (enable left).
Low	Low	Low	Low	The frequency inverter decelerates to 0 Hz (P103) and then disconnects the motor from the voltage supply.
х	х	х	High	The frequency inverter is disconnected from the voltage supply immediately and the motor runs to a standstill without deceleration.
x	х	High	Low	The frequency inverter performs a Quick stop (P426) and then disconnects the motor from the voltage supply.

The active parameter set can be set via the input **PARASET**.

If the output is in **STATUS** = 1, the FI is switched on and the motor is supplied with power.

VAR_INPUT			VAR_OUTPU	т	
Input	Explanation	Туре	Output	Explanation	Туре
ENABLE	Enable	BOOL	STATUS	Motor supplied with power	BOOL
DISABLEVOLTA GE	Disconnect voltage	BOOL	ERROR	Error in FB	BOOL
QUICKSTOP	Quick stop	BOOL	ERRORID	Error code	INT
PARASET	Active parameter set Value range: 0 – 3	BYTE			
ENABLE_RIGHT	Enable right (as for ENABLE) (SK5xxP)	BOOL			
ENABLE_LEFT	Enable left (SK5xxP)	BOOL			
ERRORID	Explanation				
0	No error				
1001h	Stop function is active				
1300h	The FI is in a state where	e the sele	ected function o	annot be executed.	

Move(Execute := Control.Status);

Example in ST:

```
(* Device enabled with Dig3*)
Control.Enable := _5_State_digital_input.2;
(* Parameter sets are specified via Dig1 and Dig2. *)
Control.ParaSet := INT_TO_BYTE(_5_State_digital_input and 2#11);
Control;
(* Is the device enabled? *)
if Control.Status then
  (* Is a different position to be moved to? *)
  if SaveBit3 <> _5_State_digital_input.3 then
   SaveBit3 := _5_State_digital_input.3;
   if SaveBit3 then
     Move.Position := 500000;
    else
     Move.Position := 0;
    end if;
   Move(Execute := False);
  end if;
end_if;
(* Move to position if the device is enabled. *)
```


11.3.3.2 MC_Control_MS

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability								Х

This FB is used to control the starter (MS).

Module inputs				Frequency inverter behaviour
ENABLE_RIG HT	ENABLE_LEF T	QUICKSTO P	DISABLEVOLTAGE	
High	Low	Low	Low	MS is switched on, clockwise
Low	High	Low	Low	MS is switched on, counter-clockwise
High	High	Low	Low	MS is switched off
Low	Low	Low	Low	MS decelerates to 0 Hz (P103) and then disconnects the motor from the voltage supply
x	х	х	High	MS is disconnected from the voltage supply immediately and the motor runs to a standstill without deceleration
x	x	High	Low	MS performs a Quick stop (P426) and then disconnects the motor from the voltage supply.

(X = The level at the input is irrelevant)

If the output is **STATUS** = 1, the MS is switched on and the motor is supplied with power.

If **OPENBRAKE** is set to 1, the brake is opened.

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
ENABLE_RIGHT	Enable right	BOOL	STATUS	Motor supplied with power	BOOL		
ENABLE_LEFT	Enable left	BOOL	ERROR	Error in FB	BOOL		
DISABLEVOLTA GE	Disconnect voltage	BOOL	ERRORID	Error code	INT		
QUICKSTOP	Quick stop	BOOL					
OPENBRAKE	Open brake	BOOL					
ERRORID	Explanation						
0	No error						
1001h	Stop function is active						
1300h	MS is in an unexpected	state					

11.3.3.3 MC_Home

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability		Х	Х		Х	Х	Х	Х

Causes the frequency inverter to start a reference point run if **EXECUTE** changes from 0 to 1 (flank). The frequency inverter moves with the setpoint frequency which is set in **VELOCITY**. If the input with the position reference signal (P420[-xx] =) becomes active, a change of direction of rotation occurs. On the negative flank of the position reference signal the value in **POSITION** is adopted. The frequency inverter then decelerates to 0 Hz and the **DONE** signal changes to 1. During the entire **HOME** run the **BUSY** output is active. If the input **MODE** is set to **True**, the drive adopts the average value of both positions during the reference point run (positive flank \rightarrow negative flank) when the reference point switch is passed over and sets this value as the reference point. The drive reverses and therefore stops at the reference point which has been thus determined. The input **POSITION** cannot be used.

If the process is cancelled (e.g. by another MC function module), COMMANDABORTED is set.

In case of error, **ERROR** is set to 1. In this case, **DONE** is 0. The corresponding error code is then valid in **ERRORID**.

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
EXECUTE	Enable	BOOL	DONE	Specified setpoint position reached	BOOL	
POSITION	Setpoint position	DINT	COMMAND- ABORTED	Command cancelled	BOOL	
VELOCITY	Setpoint frequency	INT	ERROR	Error in FB	BOOL	
MODE (V2.1 and higher)	See below	BOOL	ERRORID	Error code	INT	
			BUSY	Home run active	BOOL	
ERRORID	Explanation	•				
0	No error					
1000h	FI is not enabled					
1200h	Position control is not ac	tivated				
1201h	The High position is not	entered i	n the PLC setp	oint values (P553)		
1202h	The Low position is not e	entered in	the PLC setpo	pint values (P553)		
1D00h	Absolute encoders are n	ot suppo	rted			

11.3.3.4 MC_Home (SK 5xxP)

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х			On+				

Causes the frequency inverter to start a reference point run if **EXECUTE** changes from 0 to 1 (flank). The frequency inverter moves with the setpoint frequency which is set in **VELOCITY**. If the input with the position reference signal (P420[-xx] =) becomes active, a change of direction of rotation occurs. On the negative flank of the position reference signal the value in **POSITION** is adopted. The frequency inverter then decelerates to 0 Hz and the **DONE** signal changes to 1. During the entire **HOME** run the **BUSY** output is active.

If the process is cancelled (e.g. by another MC function module), **COMMANDABORTED** is set.

In case of error, **ERROR** is set to 1. In this case, **DONE** is 0. The corresponding error code is then valid in **ERRORID**.

VAR_INPUT			VAR_OUTPU	т	
Input	Explanation	Туре	Output	Explanation	Туре
EXECUTE	Enable	BOOL	DONE	Specified setpoint position reached	BOOL
POSITION	Setpoint position	DINT	COMMAND- ABORTED	Command cancelled	BOOL
VELOCITY	Setpoint frequency	INT	ERROR	Error in FB	BOOL
MODE	See below	BYTE	ERRORID	Error code	INT
			BUSY	Home run active	BOOL
ERRORID	Explanation				
0	No error				
1000h	FI is not enabled				
1200h	Position control is not ac	tivated			
1201h	The High position is not	entered ir	n the PLC setpo	pint values (P553)	
1202h	The Low position is not e	entered in	the PLC setpo	pint values (P553)	
1D00h	Absolute encoders are n	ot suppoi	ted		
1D01h	Value range from "Mode	" input ex	ceeded or und	ershot (P623)	

Mode

Value	Explanation
114	For reference point method see P623
15	Once the reference point has been reached, the drive reverses. When the reference point switch is left (negative flank), this is adopted as the reference point. The reference point is therefore typically in the side of the reference point switch on which the reference point run started. Note: If the reference point switch is passed over (switch too narrow, speed too high), this is also taken as the reference point when leaving the reference point switch (negative flank). The reference point is therefore not on the side of the reference point switch from which the reference point run was started. (P623 = [15] Nord method 1)
16	As for 15, however passing over the reference point switch does not result in adoption as the reference point. A negative flank only results in adoption as the reference point after reversal has been completed. The reference point is therefore definitely on the side of the reference point switch from which the reference point run was started. (P623 = [16] Nord method 2)
17	If the reference point switch is passed over during the reference point run (positive flank \rightarrow negative flank) the drive adopts the average value of both positions and sets this as the reference point. The drive reverses and therefore stops at the reference point which has been thus determined. (P623 = [17] Nord method 3)
1834	For reference point method see P623

11.3.3.5 MC_MoveAbsolute

	SK 5xxP	SK 54xE	SK 53xE	$\Omega n / \Omega n +$	SK 2xxE	SK 2xxE-EDS	SK 180E	SK 155E-FDS
	SK 5xxP		SK 52xE	01/011+			SK 190E	SK 175E-FDS
Availability	Х	Х	Х	On+	Х	Х	Х	

Writes a position and speed setpoint to the frequency inverter if **EXECUTE** changes from 0 to 1 (flank). The set point frequency **VELOCITY** is transferred according to the scaling explained in MC_MoveVelocity.

POSITION:

MODE = False:

The setpoint position results from the value transferred into **POSITION**.

MODE = True:

The value transferred into **POSITION** corresponds to the index from parameter P613 increased by

 $\underline{1}.$ The position stored in this parameter index corresponds to the setpoint position.

Example:

Mode = True; Position = 12

The FB moves to the position which is in the current parameter set of P613[-13].

If the inverter has reached the setpoint position, **DONE** is set to 1. **DONE** is deleted by resetting **EXECUTE**. If **EXECUTE** is deleted before the target position is reached, **DONE** is set to 1 for one cycle. During movement to the setpoint position, **BUSY** is active. If the process is cancelled (e.g. by another MC function module), **COMMANDABORTED** is set. In case of error, **ERROR** is set to 1 and the corresponding error code is set in **ERRORID**. In this case, **DONE** is 0. With a negative flank on **EXECUTE**, all outputs are reset to 0.

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
EXECUTE	Enable	BOOL	DONE	Specified setpoint position reached	BOOL	
POSITION	Setpoint position	DINT	BUSY	Setpoint position not reached	BOOL	
VELOCITY	Setpoint frequency	INT	COMMAND- ABORTED	Command cancelled	BOOL	
MODE	Mode Source Setpoint position	BOOL	ERROR	Error in FB	BOOL	
			ERRORID	Error code	INT	
ERRORID	Explanation					
0	No error					
0x1000	FI is not enabled					
0x1200	Position control is not ac	tivated				
0x1201	The High position is not	entered i	n the PLC setpo	oint values (P553)		
0x1202	The Low position is not e	entered ir	the PLC setpo	pint values (P553)		

Example in ST:

```
(* The device is enabled if DIG1 = TRUE *)
Power(Enable := _5_State_digital_input.0);
IF Power.Status THEN
   (* The device is enabled and moves to position 20000 with 50% max. frequency.
        For this action, the motor requires an encoder, and position control must be enabled.
        *)
    MoveAbs(Execute := _5_State_digital_input.1, Velocity := 16#2000, Position := 20000);
END_IF
```


11 PLC (Programmable Logic Controller)

11.3.3.6 MC_MoveAdditive

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	On+	Х	Х	Х	

Except for the **DISTANCE** input, this corresponds in all points with MC_MoveAbsolute. The setpoint position results from the addition of the actual setpoint position and the transferred **DISTANCE**.

VAR_INPUT			VAR_OUTPU	т	
Input	Explanation	Туре	Output	Explanation	Туре
EXECUTE	Enable	BOOL	DONE	Specified setpoint position reached	BOOL
DISTANCE	Setpoint position	DINT	COMMAND- ABORTED	Command cancelled	BOOL
VELOCITY	Setpoint frequency	INT	ERROR	Error in FB	BOOL
MODE	Mode Source Setpoint position	BOOL	ERRORID	Error code	INT
			BUSY	Setpoint position not reached	BOOL
ERRORID	Explanation				
0	No error				
1000h	FI is not enabled				
1200h	Position control is not ac	tivated			
1201h	The High position is not	entered i	n the PLC setp	oint values (P553)	
1202h	The Low position is not e	entered ir	the PLC setpo	pint values (P553)	

11.3.3.7 MC_MoveRelative

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	On+	Х	Х	Х	

Except for the **DISTANCE** input, this corresponds in all points with MC_MoveAbsolute. The setpoint position results from the addition of the actual current position and the transferred **DISTANCE**.

VAR_INPUT			VAR_OUTPU	т	
Input	Explanation	Туре	Output	Explanation	Туре
EXECUTE	Enable	BOOL	DONE	Specified setpoint position reached	BOOL
DISTANCE	Setpoint position	DINT	COMMAND- ABORTED	Command cancelled	BOOL
VELOCITY	Setpoint frequency	INT	ERROR	Error in FB	BOOL
MODE	Mode Source Setpoint position	BOOL	ERRORID	Error code	INT
			BUSY	Setpoint position not reached	BOOL
ERRORID	Explanation				
0	No error				
1000h	FI is not enabled				
1200h	Position control is not ac	tivated			
1201h	The High position is not	entered i	n the PLC setp	oint values (P553)	
1202h	The Low position is not e	entered ir	the PLC setpo	pint values (P553)	

11.3.3.8 MC_MoveVelocity

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	

Sets the set point frequency for the frequency inverter if **EXECUTE** changes from 0 to 1 (flank). If the frequency inverter has reached the set point frequency, **INVELOCITY** is set to 1. While the FI is accelerating to the set point frequency, the **BUSY** output is active. If **EXECUTE** has already been set to 0, **INVELOCITY** is set to 1 for only one cycle. If the process is cancelled (e.g. by another MC function module), **COMMANDABORTED** is set.

With a negative flank on **EXECUTE**, all outputs are reset to 0.

VELOCITY is entered with scaling according to the following formula:

VELOCITY = (Set point frequency (Hz) × 0x4000) / P105

VAR_INPUT			VAR_OUTPU	т	
Input	Explanation	Туре	Output	Explanation	Туре
EXECUTE	Enable	BOOL	INVELOCIT Y	Specified set point frequency reached	BOOL
VELOCITY	Setpoint frequency	INT	BUSY	Set point frequency not yet reached	BOOL
			COMMAND- ABORTED	Command cancelled	BOOL
			ERROR	Error in FB	BOOL
			ERRORID	Error code	INT
ERRORID	Explanation				
0	No error				
1000h	FI is not enabled				
1100h	FI not in speed mode (po	osition co	ntrol enabled)		
1101h	No set point frequency p	arameter	ised (P553)		

Example IL:

CAL Power CAL Move LD TRUE ST Power.Enable (* Set 20 Hz (Max. 50 Hz) *) LD DINT#20 MUL 16#4000 DIV 50 DINT_TO_INT ST Move.Velocity LD Power.Status ST Move.Execute

Example in ST:

```
(* Device ready for operation if DIG1 set *)
Power(Enable := _5_State_digital_input.0);
IF Power.Status THEN
   (* Device enabled with 50% of max. frequency if DIG2 set *)
   MoveVelocity(Execute := _5_State_digital_input.1, Velocity := 16#2000);
END_IF
```

11.3.3.9 MC_Power

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

The output stage of the device can be switched on and off with this function. If the **ENABLE** input is set to 1, the output stage is enabled. The prerequisite for this is that the device is in "Switch-on inhibit" or "Ready to switch-on" state. If the device is in "Fault" or "Fault response active" state, the fault must first be remedied and acknowledged. Only then, enabling can be carried out via this block. If the device is in "Not ready to switch-on " state, switch-on is not possible. In all cases, the FB goes into error state and **ENABLE** must be set to 0 to acknowledge the fault.

If the **ENABLE** input is set to 0, the device is switched off. If this happens while the motor is running, it is first decelerated to 0 Hz via the ramp set in P103.

The **STATUS** output is 1 if the output stage of the device is switched on; otherwise it is 0.

ERROR and ERRORID are reset if ENABLE is switched to 0.

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
ENABLE	Enable	BOOL	STATUS	Motor supplied with power	BOOL		
			ERROR	Error in FB	BOOL		
			ERRORID	Error code	INT		

ERRORID	Explanation
0	No error
1001h	Stop function is active
1300h	Device is not in the state "Ready to switch-on" or "Switch-on inhibit"

Example in IL:

CAL Power CAL Move LD TRUE ST Power.Enable (* Set 20 Hz (Max. 50 Hz) *) LD DINT#20 MUL 16#4000 DIV 50 DINT_TO_INT ST Move.Velocity LD Power.Status ST Move.Execute

Example in ST:

```
(* Enable power block *)
Power(Enable := TRUE);
IF Power.Status THEN
  (* The device is ready to switch-on *)
END_IF
```

11.3.3.10 MC_ReadActualPos

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	On+	Х	Х	Х	

Continually delivers the actual current position of the frequency inverter if **ENABLE** is set to 1. As soon as there is a valid current position at the output, **VALID** is set to valid. In case of error, **ERROR** is set to 1 and in this case, **VALID** is 0.

Position scaling: 1 motor revolution = 1000

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
ENABLE	Enable	BOOL	VALID	Output is valid	BOOL		
			ERROR	Error in FB	BOOL		
			POSITION	Actual current position of the FI	DINT		

Example in ST:

```
ReadActualPos(Enable := TRUE);
IF ReadActualPos.Valid THEN
    Pos := ReadActualPos.Position;
END_IF
```

11.3.3.11 MC_ReadParameter

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

Reads out a parameter cyclically from the device as long as **ENABLE** is set to 1. The read parameter is stored in Value and is valid if **DONE** is set to 1. For the duration of the reading process, the **BUSY** output is set to 1. If **ENABLE** remains 1, the parameter is constantly read out cyclically. The parameter number and index can be changed at any time when **ENABLE** is active. However, it is difficult to identify when the new value is read out, as the **DONE** signal remains 1 for the whole time. In this case, it is advisable to set the **ENABLE** signal to 0 for one cycle, as the **DONE** signal is then reset. The parameter index results from the index in the documentation minus 1. For example, P700 Index 3 ("Reason FI blocked") is queried via parameter index 2. In case of error, **ERROR** is set to 1. In this case, **DONE** is 0 and the **ERRORID** contains the error code. If the **ENABLE** signal is set to 0, all signals and the **ERRORID** are deleted.

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation			
ENABLE	Enable	BOOL	DONE	Value is valid	BOOL		
PARAMETERNU MBER	Parameter number	INT	ERROR Reading process failed		BOOL		
PARAMETERIN DEX	Parameter index	INT	BUSY	The process is not complete	BOOL		
			ERRORID	Error code	INT		
			VALUE	Read out parameter	DINT		
ERRORID	Explanation						
0	Invalid parameter number						
3	Incorrect parameter index						
4	No array						
201	Invalid order element in the last order received						
202	Internal response label cannot be depicted						

Example in ST:

```
(* Motion module FB_ReadParameter *)
ReadParam(Enable := TRUE,Parameternumber := 102, ParameterIndex := 0);
IF ReadParam.Done THEN
Value := ReadParam.Value;
ReadParam(Enable := FALSE);
END_IF
```

11.3.3.12 MC_ReadStatus

	SK 5xxP SK 54xE	SK 54vE	SK 53xE	SK 2vvE		SK 180E	SK 155E-FDS	
		SI JAKE	SK 52xE	01/01/		5K 2XXL-1 D5	SK 190E	SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

Reads out the status of the device. The status machine is orientated to the PLCopen specification "Function blocks for motion control". The status is read out as long as **ENABLE** is set to 1.

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output Explanation		Туре	
ENABLE	Enable	BOOL	VALID	Output is valid	BOOL	
			ERROR	Error in FB	BOOL	
			ERRORSTO P	The device has an error	BOOL	
			DISABLED	The output stage of the device is switched off	BOOL	
			STOPPING	A Stop command is active	BOOL	
			DISCRETE MOTION	One of the three positioning FBs is active	BOOL	
			CONTINUO USMOTION	The MC_Velocity is active	BOOL	
			HOMING	The MC_Home is active	BOOL	
			STANDSTIL L	The device has no active Move command. It is at a standstill with 0 rpm and the output stage switched on.	BOOL	

Example in ST:

```
ReadStatus(Enable := TRUE);
IF ReadStatus.Valid THEN
  fError := ReadStatus.ErrorStop;
  fDisable := ReadStatus.Disabled;
  fStopping := ReadStatus.Stopping;
  fInMotion := ReadStatus.DiscreteMotion;
  fInVelocity := ReadStatus.ContinuousMotion;
  fInHome := ReadStatus.Homing;
  fStandStill := ReadStatus.StandStill;
end_if
```


11.3.3.13 MC_Reset

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

Resets an error in the device (fault acknowledgement), on a rising flank from **EXECUTE**. In case of error, **ERROR** is set to 1 and the cause of the fault is entered in **ERRORID**. With a negative flank on **EXECUTE** all errors are reset.

VAR_INPUT			VAR_OUTPUT					
Input	Explanation	Туре	Output	Туре				
EXECUTE	Start	BOOL	DONE	Device error reset	BOOL			
			ERROR	Error in FB	BOOL			
			ERRORID	Error code	INT			
			BUSY	Reset process is still active	BOOL			
ERRORID	Explanation							
0	No error							
1001h	Stop function is active							
1700h	An error reset could not be performed, because the cause of the error is still present.							

Example in ST:

```
Reset(Execute := TRUE);
IF Reset.Done THEN
 (* The error has been reset *)
Reset(Execute := FALSE);
ELSIF Reset.Error THEN
 (* Reset could not be executed, as the cause of the error is still present *)
Reset(Execute := FALSE);
END_IF
```


11.3.3.14 MC_Stop

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

With a rising flank (0 to 1) the device is set to the state **STANDINGSTILL**. All motion functions which are active are cancelled. The device brakes to 0 Hz and switches off the output stage. As long as the Stop command is active (**EXECUTE** = 1), all other Motion FBs are blocked. The **BUSY** output becomes active with the rising flank on **EXECUTE** and remains active until there is a falling flank on **EXECUTE**.

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
EXECUTE	Start	BOOL	DONE	Command has been executed	BOOL		
			BUSY	Command is active	BOOL		

11.3.3.15 MC_WriteParameter_16 / MC_WriteParameter_32

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

Writes a 16/32 Bit parameter into the device if **EXECUTE** changes from 0 to 1 (flank). The parameter has been written if **DONE** is set to 1. For the duration of the reading process, the **BUSY** output is set to 1. In case of error, **ERROR** is set to 1 and the **ERRORID** contains the error code. The signals **DONE**, **ERROR**, **ERRORID** remain set until **EXECUTE** changes back to 0. If the **EXECUTE** signal changes to 0, the writing process is not cancelled. Only the **DONE** signal remains set for 1 PLC cycle.

VAR_INPUT			VAR_OUTPL	ІТ	
Input	Explanation	Туре	Output	Explanation	Туре
EXECUTE	Enable	BOOL	DONE	Value is valid	BOOL
PARAMETERNU MBER	Parameter number	INT	BUSY	The writing process is active	BOOL
PARAMETERIN DEX	Parameter index	INT	ERROR	Reading process failed	BOOL
VALUE	Value to be written	INT	ERRORID	Error code	INT
RAMONLY	Saves the value only in RAM (version V2.1 and higher)	BOOL			
ERRORID	Explanation				
0	Invalid parameter numbe	er			
1	Parameter value cannot	be chang	ged		
2	Lower or upper value lim	it exceed	led		
3	Incorrect parameter inde	x			
4	No array				
5	Invalid data type				
6	Only resettable (only 0 n	nay be wi	ritten)		
7	Description element can	not be ch	anged		
201	Invalid order element in	the last o	rder received		
202	Internal response label o	annot be	depicted		

Example in ST:

```
WriteParam16(Execute := TRUE, ParameterNumber := 102, ParameterIndex := 0, Value := 300);
IF WriteParam16.Done THEN
WriteParam16(Execute := FALSE);
```

END_IF;

11.3.4 Standard

11.3.4.1 CTD downward counter

	SK 5xxP SK 54	SK 54xE	SK 53xE On/O		SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS
			SK 52xE				SK 190E	SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

With a rising flank on **CD** the counter of the function block **CV** is reduced by one, as long as CV is greater than -32768. If **CV** is less than or equal to 0, the output **Q** remains TRUE. Via **LD** the counter **CV** can be set to the value saved in **PV**.

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
CD	Counter input	BOOL	Q	TRUE, if CV <= 0	BOO L	
LD	Load starting value	BOOL	cv	Actual counter reading	INT	
PV	Starting value	INT				

Example in IL:

LD VarBOOL1 ST CTDInst.CD LD VarBOOL2 ST CTDInst.LD LD VarINT1 ST CTDInst.PV CAL CTDInst LD CTDInst.Q ST VarBOOL3 LD CTDInst.CV ST VarINT2

Example in ST:

CTDInst(CD := VarBool1, LD := VarBool2, PV := VarINT1); VarBool3 := CTDInst.Q; VarINT2 := CTDInst.CV;

NORDCON - Manual

11.3.4.2 CTU upward counter

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

With a rising flank on **CU**, the counter of the function block **CV** is increased by one. **CV** can be counted up to the value 32767. As long as **CV** is greater than or equal to **PV**, output **Q** remains TRUE. Via **R** the counter **CV** can be reset to zero.

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
си	Counter input	BOOL	Q	TRUE, if CV >= PV	BOOL	
R	Reset: counter reading	BOOL	cv	Actual counter reading	INT	
PV	Limit value	INT				

Example in IL:

LD VarBOOL1 ST CTUINST.CU LD VarBOOL2 ST CTUINST.R LD VarINT1 ST CTUINST.PV CAL CTUINST(CU := VarBOOL1, R := VarBOOL2, PV := VarINT1) LD CTUINST.Q ST VarBOOL3 LD CTUINST.CV ST VarINT2

Example in ST:

```
CTUInst(CU := VarBOOL1, R := VarBOOL2, PV := VarINT1);
VarBOOL3 := CTUInst.Q;
VarINT2 := CTUInst.CV;
```


11 PLC (Programmable Logic Controller)

11.3.4.3 CTUD upward and downward counter

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

With a rising flank on **CU** the counter CV is increased by one, as long as CV is less than 32767. With a rising flank on **CD** the counter of the function block **CV** is reduced by one, as long as **CV** is greater than -32768. Via **R** the counter **CV** can be set to zero. Via **LD** the value saved in **PV** is copied to **CV**.

R has priority over **LD**, **CU** and **CV**. **PV** can be changed at any time, **QU** always relates to the value which is currently set.

VAR_INP	UT		VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
си	Counting upwards	BOOL	QU	TRUE, if CV >= PV	BOOL		
CD	Counting downwards	BOOL	QD	TRUE, if CV <= 0	BOOL		
R	Reset: counter reading	BOOL	cv	Actual counter reading	INT		
LD	Load starting value	BOOL					
PV	Starting value / Limit value	INT					

Example in IL:

LD VarBOOL1 ST CTUDINST.CU LD VarBOOL3 ST CTUDINST.R LD VarBool4 ST CTUDINST.LD LD VarINT1 ST CTUINST.PV CAL CTUDINST LD CTUDINST.QU ST VARBOOL5 LD CTUDINST.QD ST VARBOOL5 LD CTUINST.CV ST VARINT2

Example in ST:

```
CTUDInst(CU:=VarBOOL1, R:=VarBOOL3, LD:=VarBOOL4, PV:=VarINT1);
VarBOOL5 := CTUDInst.QU;
VarBOOL5 := CTUDInst.QD;
VarINT2 := CTUDInst.CV;
```

11.3.4.4 R_TRIG and F_TRIG

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

Both functions are used for flank detection. If a flank is detected on **CLK**, **Q** is set to TRUE until the next function call-up, after which it is reset to FALSE. Only with a new flank can **Q** become TRUE again for a cycle.

- R_TRIG = rising flank
- F_TRIG = falling flank

VAR_INPUT			VAR_OUTP				
Input	put Explanation Type			Explanation	Туре		
CLK	set	BOOL	Q	Output	BOOL		

Example in IL:

LD VarBOOL1 ST RTRIGINSt.CLK CAL RTRIGINSt LD RTRIGINSt.Q ST VarBOOL2

Example in ST:

RTRIGInst(CLK:= VarBOOL1); VarBOOL2 := RTRIGInst.Q;

i Information

The output of the function only changes if the function is called up. Because of this it is advisable to continually call up the flank detection with the PLC cycle.

11.3.4.5 RS Flip Flop

	SK 5xxP	SK 54xF	SK 53xE	On/On+	SK 2xxF	SK 2xxE-EDS	SK 180E	SK 155E-FDS
		5N 94XE	SK 52xE				SK 190E	SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

Bi-stable function: via **S** the output **Q1** is set and via **R1** it is deleted again. If **R1** and **S** are both TRUE, **R1** is dominant.

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
s	set	BOOL	Q1	Output	BOOL		
R1	Reset	BOOL					

Example in IL:

LD VarBOOL1 ST RSInst.S LD VarBOOL2 ST RSInst.R1 CAL RSInst LD RSInst.Q1 ST VarBOOL3

Example in ST:

RSInst(S:= VarBOOL1 , R1:=VarBOOL2); VarBOOL3 := RSInst.Q1;

11.3.4.6 SR Flip Flop

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

Bi-stable function; via **S1** the output **Q1** is set and via **R** it is deleted again. If **R1** and **S** are both TRUE, **S1** is dominant.

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
S1	set	BOOL	Q1	Output	BOOL		
R	Reset	BOOL					

Example in IL:

LD VarBOOL1 ST SRINSt.S1 LD VarBOOL2 ST SRINSt.R CAL RSINSt LD SRINSt.Q1 ST VarBOOL3

Example in ST:

SRInst(S1:= VarBOOL1 , R:=VarBOOL2); VarBOOL3 := SRInst.Q1;

11.3.4.7 TOF switch-off delay

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

If IN = TRUE, then **Q** is set to TRUE. If IN changes to FALSE, the timer counts upwards. As long as the timer is running (**ET** < **PT**) **Q** remains set to TRUE. If (**ET** = **PT**) the timer stops, **Q** becomes FALSE. With a new rising flank on **IN**, the timer **ET** is reset to zero.

Here, literals can be used for simplified input, e.g.

- LD TIME#50s20ms = 50.020 seconds
- LD TIME#1d30m = 1 day and 30 minutes

11 PLC (Programmable Logic Controller)

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
IN	Timer active	BOOL	Q	TRUE	BOOL		
РТ	Duration	DINT	ET	Current timer reading	DINT		

Example in IL:

LD VarBOOL1 ST TOFINST.IN LD DINT#5000 ST TOFInst.PT

CAL TOFInst LD TOFInst.Q

ST VarBOOL2

Example in ST:

TOFInst(IN := VarBOOL1, PT:= T#5s); VarBOOL2 := TOFInst.Q;

0 Information

Timer ET

The time ET runs independently of a PLC cycle. Starting of the timer with IN and setting of the output Q are only executed with the function call-up "CAL". The function call-up takes place within a PLC cycle. However, with PLC programs which are longer than 5 ms this may result in the occurrence of jitter.

11.3.4.8 TON switch-on delay

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

If IN = TRUE is set, the timer counts upwards. If ET = PT, Q is set to TRUE and the timer stops. Q remains TRUE for as long as IN is also TRUE. With a new rising flank on IN the counter starts again from zero. **PT** can be changed while the timer is running. The time period in **PT** is entered in milliseconds. This enables a time delay between 5ms and 24.8 days. As the time base of the PLC is 5ms, the minimum time delay is also 5ms.

Here, literals can be used for simplified input, e.g.

- LD TIME#50s20ms = 50.020 seconds •
- LD TIME#1d30m = 1 day and 30 minutes

NORDCON - Manual

VAR_INPU	г	VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре	
IN	Timer active	BOOL	Q	TRUE	BOOL	
PT	Duration	DINT	ET	Current timer reading	DINT	

Example in IL:

LD VarBOOL1 ST TONINST.IN LD DINT#5000 ST TONINST.PT CAL TONINST LD TONINST.Q ST VarBOOL2

Example in ST:

TONInst(IN := VarBOOL1, PT:= T#5s); VarBOOL2 := TONInst.Q;

1 Information

Timer ET

The time ET runs independently of a PLC cycle. Starting of the timer with IN and setting of the output Q are only executed with the function call-up "CAL". The function call-up takes place within a PLC cycle. However, with PLC programs which are longer than 5 ms this may result in the occurrence of jitter.

11.3.4.9 TP time pulse

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

With a positive flank on **IN** the timer is started with the value 0. The timer runs up to the value which is entered **PT** and then stops. This process cannot be interrupted! PT can be changed during counting. The output **Q** is TRUE, as long as the timer **ET** is less than **PT**. If **ET = PT** and a rising flank is detected on **IN**, the timer is started again at 0.

Here, literals can be used for simplified input, e.g.

- LD TIME#50s20ms = 50.020 seconds
- LD TIME#1d30m = 1 day and 30 minutes

11 PLC (Programmable Logic Controller)

VAR_INPUT	r	VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре	
IN	Timer active	BOOL	Q	TRUE	BOOL	
РТ	Duration	DINT	ET	Current timer reading	DINT	

Example in IL:

LD VarBOOL1 ST TPInst.IN LD DINT#5000 ST TPInst.PT

CAL TPInst

LD TPInst.Q

ST VarBOOL2

Example in ST:

TPInst(IN := VarBOOL1, PT:= T#5s); VarBOOL2 := TPInst.Q;

1 Information

Timer ET

The time ET runs independently of a PLC cycle. Starting of the timer with IN and setting of the output Q are only executed with the function call-up "CAL". The function call-up takes place within a PLC cycle. However, with PLC programs which are longer than 5 ms this may result in the occurrence of jitter.

11.3.5 Access to memory areas of the frequency inverter

If the intermediate saving of large quantities of data, its transmission to or reception from other devices is necessary, the modules FB_WriteTrace and FB_ReadTrace should be used.

11.3.5.1 FB_ReadTrace

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х		

The memory areas of the FI can be read out directly with the aid of this FB.

If the FB detects a positive flank on **ENABLE**, all parameters which are present on the input are adopted. The memory address which is to be read out is indicated with **STARTINDEX** and **MEMORY**. If the reading process is successful, the **VALID** output changes to 1 and the value which has been read out is in **VALUE**.

If the FB is now called up several times and the **ENABLE** input remains at 1, with each call up the memory address which is to be read out is increased by 1 and the content of the new memory address is immediately copied to the output **VALUE**.

The current memory index for the next access can be read out under the output **ACTINDEX**. If the end of the memory has been reached, the **READY** changes to 1 and the reading process is stopped.

Values can be read in INT or DINT format. For INT values, only the Low component is evaluated by the **VALUE** output. Allocation is carried out via the **SIZE** input; a 0 stands for INT and a 1 for DINT values.

Allocation of the memory areas is carried out via the MEMORY input:

MEMORY = 1	to P613[0-251]	corresponds to 504 INT or 252 DINT values
MEMORY = 0	to P900[0-247] up to P906[0-111]	corresponds to 5200 INT or 2600 DINT values
	P907[0-247] bis P911[0-7]	(SK54xE from V2.1, before 3200/1600 INT/DINT)

The FB cannot be interrupted by other blocks

With a negative flank on ENABLE, all outputs are set to 0 and the function of the FB is terminated.

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
ENABLE	Execute	BOOL	VALID	Reading process successful	BOOL		
SIZE	Memory format	BOOL	READY	The entire memory has been read out	BOOL		
MEMORY	Selection of memory area	BYTE	ERROR	the FB has an error	BOOL		
STARTINDEX	Indicates the memory cell to be written to	INT	ERRORID	Error code	INT		
			ACTINDEX	Actual memory index, to which will be read in the next cycle	INT		
			VALUE	Value read out	DINT		
ERRORID	Explanation						
0	No error						
1A00h	STARTINDEX value ran	ge excee	ded				
1A01h	MEMORY value range e	xceeded					

11.3.5.2 FB_WriteTrace

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х		

Via this FB, individual values or large numbers of values can be intermediately saved in the FI. The values are not permanently saved, i.e. the values are lost if the FI is restarted.

If the FB detects a positive flank on **ENABLE**, all parameters with are present on the input are adopted. The value in VALUE is written to the storage address indicated in **STARTINDEX** and **MEMORY**. If the writing process is successful, the VALID output changes to 1.

If the FB is now called up several times and the **ENABLE** input remains at 1, then with each call up of the FB the input **VALUE** is read and saved and the memory address is increased by 1. The current memory index for the next access can be read out under the output **ACTINDEX**. If the end of the memory is reached, the output FULL changes to 1 and the saving process is stopped. However, if the input

OVERWRITE is set to 1, the memory index is reset to the **STARTINDEX** and the values which have been previously written are overwritten.

Values can be saved in INT or DINT format. For INT values, only the Low component is evaluated by the **VALUE** input. Allocation is carried out via the **SIZE** input; a 0 stands for INT and a 1 for DINT values.

Allocation of the memory areas is carried out via the MEMORY input:

MEMORY = 1	to P613[0-251]	corresponds to 504 INT or 252 DINT values
MEMORY = 0	to P900[0-247] up to P906[0-111]	corresponds to 5200 INT or 2600 DINT values
	P907[0-247] bis P911[0-7]	(SK54xE from V2.1, before 3200/1600 INT/DINT)

The FB cannot be interrupted by other blocks

With a negative flank on **ENABLE**, all outputs are set to 0 and the function of the FB is terminated.

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
ENABLE	Execute	BOOL	VALID	Writing process successful	BOOL		
SIZE	Memory format	BOOL	FULL	Entire memory is full	BOOL		
OVERWRITE	Memory can be overwritten	BOOL	ERROR	the FB has an error	BOOL		
MEMORY	Selection of memory area	BYTE	ERRORID	Error code	INT		
STARTINDEX	Indicates the memory cell to be written to	INT	ACTINDEX	Actual memory index, to which saving will be carried out in the next cycle	DINT		
VALUE	Value to be saved	DINT					
ERRORID	Explanation	-					
0	No error						
1A00h	STARTINDEX value ran	ge excee	ded				
1A01h	MEMORY value range e	xceeded					

i Information

Please note: The memory area in the setting MEMORY = 0 is also used by the Scope function. Use of the Scope function overwrites the saved values!

11.3.6 Visualisation with ParameterBox

In the ParameterBox, the entire display can be used for the display of information. For this, the ParameterBox must be switched to visualisation mode. This is possible with the ParameterBox (Parameter P1308) firmware version V4.3 or higher, and is carried out as follows:

- In the menu item "Display", set the parameter P1003 to "PLC Display"
- Switch to the operating value display with the left or right arrow key
- PLC display is now enabled in the ParameterBox and remains permanently enabled.

In the visualisation mode of the ParameterBox, the content of the display can be set with the two FBs described below. However, before the item "Allow ParameterBox function modules" must be activated

in the PLC configuration dialogue (Button). With the process value "Parameterbox_key_state", the keyboard status of the box can also be queried. With this, input into the PLC program can be implemented. The display structure and the keys to be read out for the ParameterBox can be seen in the figure below.

11.3.6.1 Overview visualisation

Function module	Description
FB_STRINGToPBox	Copies a string into the P-Box
FB_DINTToPBox	Copies a DINT value to the P-Box

11.3.6.2 FB_DINTToPBOX

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

This function module converts a DINT value into an ASCII string and copies this into the ParameterBox. The output can be in decimal, binary or hexadecimal format; the selection is performed via **MODE**. Via **ROW** and **COLUMN** the starting point of the string is set in the ParameterBox display. The parameter **LENGTH** transfers the length of the string in characters. In decimal **MODE** the parameter **POINT** positions a decimal point in the number which is to be displayed. In **POINT** it is stated how many characters are to the right of the decimal point. With the setting 0 the **POINT** function is disabled. If the number contains more characters than the length allows and no decimal point is set, the overflow is indicated by the character "#". If there is a decimal point in the number, all numbers behind the decimal point may be omitted if required. In hexadecimal and binary MODE the lowest value bits are displayed if the set length is too short. As long as **ENABLE** is set to 1, all changes to the inputs are adopted immediately. If **VALID** changes to 1, the string has been correctly transferred. In case of error, **ERROR** is set to 1. In this case, **VALID** is 0. The corresponding error code is then valid in **ERRORID**. With a negative flank on **ENABLE**, **VALID**, **ERROR** and **ERRORID** are reset.

Examples:

Setting	Number to be displayed	P-Box display	
Length = 5	10045	10045	
Point = 0	12345	12345	
Length = 5	10045		
Point = 0	-12345	#####	
Length = 10	400456700	400450 700	
Point = 3	123450789	123450.789	
Length = 8	400456700	400450 7	
Point = 3	123430789	123430.7	

NORDCON – Manual

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
ENABLE	Transfer of the string	BOOL	VALID	String transferred	BOOL		
MODE	Display format 0 = Decimal 1 = Binary 2 = Hexadecimal Value range = 0 to 2	BYTE	ERROR	Error in FB	BOOL		
ROW	Line of the display Value range = 0 to 3	BYTE	ERRORID	Error code	INT		
COLUMN	Column of the display Value range = 0 to 19	BYTE					
POINT	Position of decimal point Value range = 0 to 10 0 = Function is disabled	BYTE					
LENGTH	Output length Value range = 1 to 11	BYTE					
VALUE	Number to be output	DINT					
ERRORID	Explanation						
0	No error						
1500h	String overwrites the me	emory are	a of the P-Box	array			
1501h	Value range exceeded a	at LINE in	put				
1502h	Value range exceeded a	at ROW in	iput				
1504h	Value range exceeded a	at POINT	input				
1505h	Value range exceeded a	at LENGT	H input				
1506h	Value range exceeded a	at MODE	input				

Example in ST:

```
(* Initialisation *)
if FirstTime then
 StringToPBox.ROW := 1;
  StringToPBox.Column := 16;
 FirstTime := False;
end if;
(* Query actual position *)
ActPos(Enable := TRUE);
if ActPos.Valid then
  (* Display position in the PBox displays (PBox P1003 = PLC display ) *)
 DintToPBox.Value := ActPos.Position;
 DintToPBox.Column := 9;
  DintToPBox.LENGTH := 10;
 DintToPBox(Enable := True);
end if;
(* Switch device on or off via DIG1 *)
Power(Enable := _5_State_digital input.0);
if OldState <> Power.Status then
 OldState := Power.Status;
  (* Is device switched on? *)
  if Power.Status then
    StringToPBox(Enable := False, Text := TextOn);
  else
    StringToPBox(Enable := False, Text := TextOff);
  end if;
  StringToPBox(Enable := TRUE);
else
 StringToPBox;
end if;
```

11.3.6.3 FB_STRINGToPBOX

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

This function module copies a string (chain of characters) into the memory array of the ParameterBox. Via **ROW** and **COLUMN** the starting point of the string is set in the ParameterBox display. The parameter **TEXT** transfers the required string to the function module; the name of the string can be obtained from the table of variables. As long as **ENABLE** is set to 1, all changes to the inputs are adopted immediately. If the **CLEAR** input is set, the entire display content is overwritten with space characters before the selected string is written. If **VALID** changes to 1, the string has been correctly transferred. In case of error, **ERROR** is set to 1. In this case, **VALID** is 0. The corresponding error code is then valid in **ERRORID**. With a negative flank on **ENABLE**, **VALID**, **ERROR** and **ERRORID** are reset.

NORDCON – Manual

VAR_INPUT			VAR_OUTPU	VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре		
ENABLE	Transfer of the string	BOOL	VALID	String transferred	BOOL		
CLEAR	Clear display	BOOL	ERROR	Error in FB	BOOL		
ROW	Line of the display Value range = 0 to 3	BYTE	ERRORID	Error code	INT		
COLUMN	Column of the display Value range = 0 to 19	BYTE					
ТЕХТ	Text to be displayed	STRING					
ERRORID	Explanation						
0	No error						
1500h	String overwrites the memo	ory area of th	ne P-Box array				
1501h	Value range exceeded at R	OW input					
1502h	Value range exceeded at C	OLUMN inp	out				
1503h	The selected string number	does not e	xist				
1506h	The option "Allow Paramete	erBox functi	on modules" is	not activated in the PLC configuration	on.		

Example in ST:

```
(* Initialisation *)
if FirstTime then
 StringToPBox.ROW := 1;
  StringToPBox.Column := 16;
 FirstTime := False;
end if;
(* Query actual position *)
ActPos(Enable := TRUE);
if ActPos.Valid then
  (* Display position in the PBox displays (PBox P1003 = PLC display ) *)
 DintToPBox.Value := ActPos.Position;
 DintToPBox.Column := 9;
  DintToPBox.LENGTH := 10;
 DintToPBox(Enable := True);
end if;
(* Switch device on or off via DIG1 *)
Power(Enable := _5_State_digital input.0);
if OldState <> Power.Status then
 OldState := Power.Status;
  (* Is device switched on? *)
  if Power.Status then
    StringToPBox(Enable := False, Text := TextOn);
  else
    StringToPBox(Enable := False, Text := TextOff);
  end if;
  StringToPBox(Enable := TRUE);
else
 StringToPBox;
end if;
```

11.3.7 FB_Capture (Detection of rapid events)

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х		

The cycle time of the PLC is 5ms. This cycle may be too long to detect very rapid external events. Via FB Capture it is possible to capture certain physical values on flanks at the FI inputs. Monitoring of the inputs is carried out in a 1ms cycle. The values which are saved can be read by the PLC later.

With a positive flank on **EXECUTE** all inputs are read in and the Capture function is enabled. The FI input which is to be monitored is selected via the **INPUT** input. Via **EDGE**, the type of flank and the behaviour of the module are selected.

- **EDGE** = 0 With the first positive flank, the selected value is saved under **OUTPUT1** and **DONE1** is set to 1. The next positive flank saves under **OUTPUT2** and **DONE2** is set to 1. The FB is then disabled.
- **EDGE** = 1 Behaviour as for **EDGE** = 0, with the difference that triggering is with the negative flank.
- **EDGE** = 2 With the first positive flank, the selected value is saved under **OUTPUT1** and **DONE1** is set to 1. The next negative flank saves under **OUTPUT2** and **DONE2** is set to 1. The FB is then disabled.
- **EDGE** = 3 Behaviour as for **EDGE** = 2, with the difference that triggering is first with the negative and then with the positive flank.

If the input **CONTINUOUS** is set to 1, then only the settings 0 and 1 are relevant to **EDGE**. The FB continues to run and always saves the last triggering event under **OUTPUT1**. **DONE1** remains active from the first event. **DONE2** and **OUTPUT2** are not used.

The **BUSY** output remains active until both Capture events (**DONE1** and **DONE2**) have occurred.

The function of the module can be terminated at any time with a negative flank on **EXECUTE**. All outputs retain their values. With a positive flank on **EXECUTE** first, all outputs are deleted and then the function of the module is started.

VAR_INPUT			VAR_OUTPUT			
Input	Explanation	Туре	Output	Explanation	Туре	
EXECUTE	Execute	BOOL	DONE1	Value in OUTPUT1 valid	BOOL	
CONTINUOUS	Single execution or continuous operation	BOOL	DONE2	Value in OUT valid	BOOL	
INPUT	SK54xE Input to be monitored 0 = Input 1 7 = Input 8 SK52xE, SK53xE, SK2xxE, SK2xx-EFDS Input to be monitored 0 = Input 1 3 = Input 4	BYTE	BUSY	FB still waiting for a Capture event	BOOL	
EDGE	Triggering flank	BYTE	ERROR	the FB has an error	BOOL	
SOURCE	Value to be saved 0 = Position in rotations 1 = Actual frequency 2 = Torque	BYTE	ERRORID	Error code	INT	
			OUTPUT1	Value for 1st Capture event	DINT	
			OUTPUT2	Value for 2nd Capture event	DINT	
ERRORID	Explanation					
0	No error					
1900h	INPUT value range exce	eded				
1901h	EDGE value range exce	eded				
1902h	SOURCE value range ex	kceeded				
1903h	More than two instances	are activ	/e			

Example in ST:

```
Power(ENABLE := TRUE);
IF Power.STATUS THEN
   Move(EXECUTE := TRUE, POSITION := Pos, VELOCITY := 16#2000);
   (* The FB waits for a High signal on DIG1. When this is detected, the FB saves the actual
   position. The value can be queried with the property "OUTPUT1". *)
   Capture(EXECUTE := TRUE, INPUT := 0);
   IF Capture.DONE1 THEN
      Pos := Capture.OUTPUT1;
      Move(EXECUTE := FALSE);
   END_IF;
END IF;
```

1 Information

Several instances of this FB may exist in the PLC program. However, only two instances may be active at the same time!

11.3.8 FB_DinCounter

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	х	х	х	Х	х	х	V1.1 and above	

This FB is used to count pulses via the digital inputs. All flanks (Low - High and High - Low) are counted. The minimum pulse width is 1 ms.

The FB is enabled via ENABLE. With the positive flanks, the inputs PV, UD, DIN and MODE are adopted and all outputs are deleted.

UD defines the counting direction

- 0 = larger numbers
- 1 = smaller numbers

A counter value can be entered at PV. Depending on the setting of the **MODE** input this has different effects.

MODE

- 0 = Overflow, the counter is operated as a continuous counter. It can overflow in both positive and negative directions. When the function is started, CV = PV is set. In this Mode BUSY remains always 1 and Q always 0.
- 1 = without overflow
 - Counting forwards to CV starts at 0, BUSY = 1, and runs until CV=>PV. Then BUSY changes to 0 and Q to 1. The counting process stops.
 - Counting backwards to CV starts at PV and runs until CV<= 0. During this time is BUSY = 1 and changes to 0 when the end of the count is reached. In return, Q changes to 1.
 - The restart of the counter is reached at the ENABLE input via a new flank.

DIN defines the measuring input. The number of inputs depends on the respective FI (max. 4).

- Input 1 = 0
- Input 2 = 1
- Input 3 = 2
- Input 4 = 3

VAR_INPUT			VAR_OUTPU	т	
Input	Explanation	Туре	Output	Explanation	Туре
ENABLE	Enable	BOOL	Q	Counting completed	BOOL
UD	Counting direction	BOOL	BUSY	Counter runs	BOOL
	0 = larger numbers 1 = smaller numbers				
PV	Counter value	INT	ERROR	the FB has an error	BOOL
MODE	Mode	BYTE	ERRORID	Error code	INT
DIN	Measuring input	BYTE	cv	Counter value	INT
			CF	Counting frequency (resolution of 0.1) ¹⁾	INT
ERRORID	Explanation				
0	No error				
0x1E00	Digital input is already us	sed by ot	her counter		
0x1E01	Digital input does not ex	ist			
0x1E02	MODE value range exce	eded			

1) Measuring range 0,1 Hz to 1 kHz

11.3.9 FB_FunctionCurve

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	

This function module produces a mapping control. Defined points can be communicated to the function block, with which it emulates a function. The output then behaves according to the saved map. Linear interpolation is carried out between the individual base points. The base point are defined with X and Y values. The X values are always of the **INT** type, the Y values can either be of the **INT** or the **DINT** type, depending on the size of the largest base point. More memory is required if **DINT** is used. The base points are entered in the column "Init Value" in the variables window. If TRUE is detected at the **ENABLE** input, on the basis of the input value **INVALUE** the corresponding output value **OUTVALUE** is calculated. **VALID** = TRUE indicates that the output value **OUTVALUE** is valid. As long as **VALID** is FALSE, the output **OUTVALUE** has the value 0. If the input value **INVALUE** exceeds the upper or the lower end of the characteristic range, the first or the last output value of the characteristic range remain until the **INVALUE** returns to within the area of the characteristic range. If the characteristic range is exceeded or undershot, the appropriate output **MINLIMIT** or **MAXLIMIT** is set to TRUE. **ERROR** becomes TRUE, if the abscissa values (X values) of the characteristic range do not continuously increase or if no table is initialised. The appropriate error is output by **ERRORID** and the starting value is 0. The error is reset if **ENABLE** = FALSE.

11 PLC (Programmable Logic Controller)

VAR_INPUT			VAR_OUTPU	т	
Input	Explanation	Туре	Output	Explanation	Туре
ENABLE	Execute	BOOL	VALID	Output value is valid	BOOL
INVALUE	Input value (x)	INT	ERROR	Error in FB	BOOL
			ERRORID	Error code	INT
			MAXLIMIT	Maximum limit reached	BOOL
			MINLIMIT	Minimum limit reached	BOOL
			OUTVALUE	Output value (y)	DINT
ERRORID	Explanation				
0	No error				
1400h	Abscissa values (X value	es) of the	characteristic I	range do not always increase	
1401h	No map initialised				

NORDCON - Manual

11.3.10	FB_PID)T1						
	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

The P-I-DT1 is a freely parameterisable individual controller. If individual components or the P, I or DT1 component are not required, their parameters are written as 0. The T1 component only functions together with the D component. Therefore a PT1 controller cannot be parameterised. Due to internal memory limitations, the control parameters are restricted to the following areas:

Permissible v	alue range for control p	arameters	
Parameters	Value range	Scaling	Resulting value range
Р (Кр)	0 – 32767	1/100	0.00 – 327.67
l (Ki)	0 – 10240	1/100	0.00 – 102.40
D (Kd)	0 – 32767	1/1000	0.000 – 32.767
T1 (ms)	0 – 32767	1/1000	0.000 – 32.767
Max.	-32768 – 32767		
Min.	-32768 – 32767		

The controller starts to calculate when ENABLE is set to TRUE. The control parameters are only adopted with a rising flank from ENABLE. While ENABLE is TRUE, changes to the control parameters have no effect. If **ENABLE** is set to FALSE, the output remains at its last value.

The output bit VALID is set, as long as the output value of Q is within the Min and Max limits and the **ENABLE** input is TRUE.

ERROR is set as soon as an error occurs. The VALID bit is then FALSE and the cause of the fault can be identified from the ERRORID (see table below).

If the **RESET** bit is set to TRUE, the content of the integrator and the differentiator are set to 0. If the ENABLE input is FALSE, the OUTPUT output is also set to 0. If the ENABLE input is set to TRUE, only the P component has an effect on the **OUTPUT** output.

If the output value **OUTPUT** is outside of the range of the maximum or minimum output values, the corresponding bit MAXLIMIT or MINLIMIT is set and the VALID bit is set to FALSE.

6 Information

If the entire program cannot be executed within a PLC cycle, the controller calculates the output value a second time with the old scanning values. This ensures a constant scanning rate. Because of this it is essential that the CAL command for the PIDT1 controller is executed in each PLC cycle and only at the end of the PLC program.

11 PLC (Programmable Logic Controller)

VAR_INPUT			VAR_OUTPU	т	
Input	Explanation	Туре	Output	Explanation	Туре
ENABLE	Execute	BOOL	VALID	Output value is valid	BOOL
RESET	Reset outputs	BOOL	ERROR	Error in FB	BOOL
Р	P component (Kp)	INT	ERRORID	Error code	INT
1	l component (Ki)	INT	MAXLIMIT	Maximum limit reached	BOOL
D	D component (Kd)	INT	MINLIMIT	Minimum limit reached	BOOL
Т1	T1 component in ms	INT	OUTPUT	Output value	INT
мах	Maximum output value	INT			
MIN	Minimum output value	INT			
SETPOINT	Setpoint	INT			
VALUE	Actual value	INT			
ERRORID	Explanation		-		
0	No error				
1600h	P component not within val	ue range			
1601h	I component not within valu	e range			
1602h	D component not within val	ue range			
1603h	T1 component not within va	alue range	Э		

NORDCON – Manual

11.3.11 FB_ResetPostion

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	х	V2.3 and above	V3.1 and above	On+	V2.1 and above	х	V1.2 and above	

With a flank on the **EXECUTE** input, the current position (P601) is set to the value entered in Position. If a position offset is entered in parameter P609, this offset is subtracted from the position.

With absolute encoders the current position can only be reset to 0. The value is not used in the position.

VAR_INPUT			VAR_OUTPUT				
Input	Explanation	Туре	Output	Explanation	Туре		
EXECUTE	Execute	BOOL			1		
Position	Position	DINT					

11.3.12 FB_Weigh

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	х	V2.3 and above	V3.1 and above	Х	V2.1 and above	х	V1.2 and above	

This module is used to determine the average torque during movement at a constant speed. From this value, physical values, such as the weight which is being moved can be determined.

The FB is started via a positive flank on the **EXECUTE** input. With the flank, all inputs are adopted by the FB. The FI moves with the speed which is set in **SPEED**. The measurement is started after the elapse of the time which is set in **STARTTIME**. The duration of the measurement is defined under **MEASURETIME**. The FI stops after the elapse of the measurement time. If the input **REVERSE** = 1, the measurement process starts again, but with a negative speed. Otherwise the measurement is complete, the output **DONE** changes to 1 and the measurement result is in VALUE.

As long as the measurement process is running, **BUSY** is active.

The scaling of the measurement result **VALUE** is 1 = 0.01% of the rated torque of the motor.

Call-up of another Motion FB stops the measurement function and the output **ABORT** changes to 1.

All outputs of the FB are reset with a new positive flank on **EXECUTE**.

11 PLC (Programmable Logic Controller)

VAR_INPUT			VAR_OUT	PUT	
Input	Explanation	Туре	Output	Explanation	Туре
EXECUTE	Execute	BOOL	DONE	Measurement ended	BOOL
REVERSE	Change of rotation direction	BOOL	BUSY	Measurement running	BOOL
STARTTIME	Time to start of measurement in ms	INT	ABORT	Measurement aborted	BOOL
MEASURETIME	Measurement time in ms	INT	ERROR	the FB has an error	BOOL
SPEED	Measuring speed in % (standardised to the maximum frequency, 16#4000 corresponds to 100%)	INT	ERRORID	Error code	INT
			VALUE	Measurement result	INT
ERRORID	Explanation				
0	No error				
0x1000	FI not switched on				
0x1101	Setpoint frequency not para	meterise	d as a setpoii	nt (P553)	
0x1C00	STARTTIME value range ex	ceeded			
0x1C01	MEASURETIME value rang	e exceed	ed		
0x1C02	The tolerance of the measure	rement va	alues with res	spect to each other is greater than	1/8

Example in ST:

```
(* Enable device *)
Power(Enable := TRUE);
(* Is the device enabled? *)
if Power.Status then
  (* Specify starting time 2000ms *)
  Weigh.STARTTIME := 2000;
  (* Specify measuring time 1000ms *)
  Weigh.MEASURETIME := 1000;
  (* Specify speed 25% of maximum speed *)
  Weigh.SPEED := 16#1000;
end_if;
Weigh(EXECUTE := Power.Status);
  (* Was weighing completed? *)
if Weigh.done then
        Value := Weigh.Value;
end_if;
```

1 Information

Only one instance of this FB is permissible in the PLC program!

11.4 Operators

11.4.1 Arithmetical operators

i Information

Some of the following operators may also contain further commands. These must be placed in brackets behind the operator. It must be noted that a space must be included behind the opened bracket. The closing bracket must be placed on a separate line of the program.

LD Var1 ADD(Var2 SUB Var3

)

11.4.1.1 ABS

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type			Х	Х

Forms the absolute value from the accumulator

Example in IL:

```
LD -10 (* Loads the value -10 *)
ABS (* Accumulator = 10 *)
ST Value1 (* Saves the value 10 in Value1 ab *)
```

Example in ST:

Value1 := ABS(-10); (* The result is 10 *)

11.4.1.2 ADD and ADD(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

Adds variables and constants together with the correct prefixes. The first value for addition is in the AE/accumulator, the second is loaded with the ADD command or is inside the bracket. Several variables or constants can be added to the ADD command. For bracket addition, the accumulator is added to the result of the expression in brackets. Up to 6 bracket levels are possible. The values to be added must belong to the same type of variable.

Example in IL:

```
LD 10
ADD 204 (* Addition of two constants *)
ST Value
LD 170 (* Addition of a constant and 2 variables. *)
ADD Var1, Var2 (* 170dez + Var1 + Var2 *)
ST Value
LD Var1
ADD( Var2
SUB Var3 (* Var1 + ( Var2 - Var3 ) *)
)
ST Value
```

Example in ST:

```
Ergebnis := 10 + 30; (* The result is 40 *)
Ergebnis := 10 + Var1 + Var2;
```

11.4.1.3 DIV and DIV(

	SK 5xxP	SK 54xE	SK 53xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS
			SK 52xE				SK 190E	SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

Divides the accumulator by the operands For divisions by zero, the maximum possible result is entered into the accumulator, e.g. for a division with INT values, this is the value 0x7FFF or the value 0x8000 if the divisor is negative. For bracket division, the accumulator is divided by the result of the expression in brackets. Up to 6 bracket levels are possible. The values to be divided must belong to the same type of variable.

Example in IL:

```
LD 10

DIV 3 (* Division of two constants *)

ST iValue (* The result is 9 *)

LD 170 (* Division of a constant and 2 variables. *)

DIV Var1, Var2 (* (170dez : Var1) : Var2 *)

ST Value

LD Var1 (* Divide Var1 by the content of the brackets *)

DIV( Var2

SUB Var3

) (* Var1 : (Var2 - Var3 ) *)

ST Value
```

Example in ST:

Ergebnis := 30 / 10; (* The result is 3 *)
Ergebnis := 30 / Var1 / Var2;

NORDCON – Manual

11.4.1.4 LIMIT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

The command limits the value in the accumulator to the transferred minimum and maximum values. Values If this is exceeded, the maximum value is entered in the accumulator and if it is undershot, the minimum value is entered. If the value lies between the limits, there is no effect.

Example in IL:

```
LD 10 (* Loads the value 10 into the accumulator *)
LIMIT 20, 30 (* The value is compared with the limits 20 and 30. *)
(* The value in the accumulator is smaller, the accumulator is overwritten with 20 *)
ST iValue (* Saves the value 20 in Value1 *)
```

Example in ST:

```
Ergebnis := Limit(10, 20, 30); (* The result is 20 *)
```

11.4.1.5 MAX

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

This value determines the maximum value of two variables or constants For this, the current value of the accumulator is compared with the value transferred in the MAX command. After the command, the larger of the two values is in the accumulator. Both values must belong to the same type of variable.

Example in IL:

```
LD 100 (* Load 100 into the accumulator *)
MAX 200 (* Compare with the value 200 *)
ST iValue (* Save 200 in Value2 (because larger value) *)
```

Example in ST:

Ergebnis := Max(100, 200); (* The result is 200 *)

11.4.1.6 MIN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

This command determines the minimum value of two variables or constants. For this, the current value of the accumulator is compared with the value transferred in the MIN command. After the command, the smaller of the two values is in the accumulator. Both values must belong to the same type of variable.

Example in IL:

```
LD 100 (* Load 100 into the accumulator *)
MIN 200 (* Compare with the value 200 *)
ST Value2 (* Save 100 in Value2 (because smaller value) *)
```

Example in ST:

Ergebnis := Min(100, 200); (* Save 100 in Value2 (because smaller value) *)

11.4.1.7 MOD and MOD(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

The Accumulator is divided by one or more variables or constant and the remainder of the division is the result in the accumulator. For the bracket Modulus, the accumulator is divided by the result of the expression in the brackets and the modulus is formed from this. Up to 6 bracket levels are possible.

Example in IL:

```
LD 25 (* Load the dividend *)

MOD 20 (* Division 25/20 per modulus = 5 *)

ST Var1 (* Save result 5 in Var1 *)

LD 25 (* Load the dividend *)

MOD( Var1 (* Result = 25/(Var1 + 10) per modulus into the accumulator *)

ADD 10

)

ST Var3 (* Save result 10 in Var3 *)
```

Example in ST:

```
Ergebnis := 25 MOD 20; (* Save result 5 in Var1 *)
Ergebnis := 25 MOD (Var1 + 10); (* Result = 25/(Var1 + 10) per modulus into the accumulator *)
```


NORDCON – Manual

11.4.1.8 MUL and MUL(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

Multiplication of the accumulator with one or more variables or constants. For bracket multiplication, the accumulator is multiplied by the result of the expression in brackets. Up to 6 bracket levels are possible. Both values must belong to the same type of variable.

Example in IL:

```
LD 25 (* Load the multiplier *)

MUL Var1, Var2 (* 25 * Var1 * Var2 *)

ST Var2 (* Save result *)

LD 25 (* Load the multiplier *)

MUL( Var1 (* Result = 25*(Var1 + Var2) *)

ADD Var2

ST Var3 (* Save result as variable Var3 *)

)
```

Example in ST:

Ergebnis := 25 * Var1 * Var2; Ergebnis := 25 * (Var1 + Var2);

11.4.1.9 MUX

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT	
Data type		Х	Х	Х	

Various constants or variables can be selected via an index, which is located in front of the command in the accumulator. The <u>first value</u> is accessed via the <u>Index 0</u>. The selected value is loaded into the accumulator. The number of values is only limited by the program memory.

Example in IL:

```
LD 1 (* Select the required element *) MUX 10,20,30,40,Value1 (* MUX command with 4 constants and a variable *) ST Value (* Save result = 20 *)
```

Example in ST:

```
Ergebnis := Mux(1, 10, 20, 30, 40, Value1) (* Save result = 20 *)
```


11.4.1.10 SUB and SUB(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

Subtracts the accumulator from one or more variables or constants. For bracket subtraction, the accumulator is subtracted from the result of the expression in brackets. Up to 6 bracket levels are possible. The values to be subtracted must belong to the same type of variable.

Example in IL:

```
LD 10

SUB Var1 (* Result = 10 - Var1 *)

ST Ergebnis

LD 20

SUB Var1, Var2, 30 (* Result = 20 - Var1 - Var12 - 30 *)

ST Ergebnis

LD 20

SUB( 6 (* Substract 20 from the contents of the bracket *)

AND 2

) (* Result = 20 - (6 AND 2) *)

ST Ergebnis (* Result = 18 *)
```

Example in ST:

Ergebnis := 10 - Value1;

11.4.2 Extended mathematical operators

(i) Information

The operators listed here require intensive computing. This may result in a considerably longer running time for the PLC program.

11.4.2.1 COS, ACOS, SIN, ASIN, TAN, ATAN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х		

	BOOL	BYTE	ÎNT	DINT
Data type				Х

Calculation of the relevant mathematical function. The value to be calculated must be available in minutes of arc. The scaling corresponds to 1 = 1000.

Conversion: Angle in radians = (Angle in degrees * PI / 180) * 1000 e.g. an angle of 90° is converted as follows: 90° * 3,14 / 180) *1000 = 1571

NORDCON - Manual

$$AE = \sin\left(\frac{AE}{1000}\right) \cdot 1000 \qquad AE = \cos\left(\frac{AE}{1000}\right) \cdot 1000 \qquad AE = \tan\left(\frac{AE}{1000}\right) \cdot 1000$$

Example in IL:

LD 1234 SIN ST Ergebnis (* Result = 943 *)

Example in ST:

```
Ergebnis := COS(1234); (* Result = 330 *)
Ergebnis := ACOS(330); (* Result = 1234 *)
Ergebnis := SIN(1234); (* Result = 943 *)
Ergebnis := ASIN(943); (* Result = 1231 *)
Ergebnis := TAN(999); (* Result = 1553 *)
Ergebnis := ATAN(1553); (* Result = 998 *)
```

11.4.2.2 EXP

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х		

	BOOL	BYTE	ÎNT	DINT
Data type				Х

Forms the exponential function to the base of Euler's Number (2.718) from the Accumulator. Up to 3 places behind the decimal point may be stated, i.e. 1.002 must be entered as 1002.

$$AE = e^{\left(\frac{AE}{1000}\right)} \cdot 1000$$

Example in IL:

LD 1000 EXP ST Ergebnis (* Result = 2718 *)

Example in ST:

Ergebnis := EXP(1000); (* Result = 2718 *)

11.4.2.3 LN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х		

	BOOL	BYTE	ÎNT	DINT
Data type				Х

Logarithm to base e (2.718). Up to 3 places behind the decimal point may be stated, i.e. 1.000 must be entered as 1000.

$$AE = \ln \left(\frac{AE}{1000}\right) \cdot 1000$$

Example in IL:

LD 1234 LN ST Ergebnis

Example in ST:

```
Ergebnis := LN(1234); (* Result = 210 *)
```

11.4.2.4 LOG

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х		

	BOOL	BYTE	ÎNT	DINT
Data type				Х

Forms the base 10 logarithm from the accumulator. Up to 3 places behind the decimal point may be stated, i.e. 1.000 must be entered as 1000.

$$AE = log_{10} \left(\frac{AE}{1000}\right) \cdot 1000$$

Example in IL:

LD 1234 LOG ST Ergebnis (* Result = 91 *)

Example in ST:

Ergebnis := LOG(1234); (* Result = 91 *)

NORDCON – Manual

11.4.2.5 SQRT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х		

	BOOL	BYTE	ÎNT	DINT
Data type				Х

Forms the square root from the accumulator. Up to 3 places behind the decimal point may be stated, i.e. 1.000 must be entered as 1000.

$$AE = \sqrt{\left(\frac{AE}{1000}\right)} \cdot 1000$$

Example in IL:

```
LD 1234
SQRT
ST Ergebnis (* Result = 1110 *)
```

Example in ST:

Ergebnis := SQRT(1234); (* Result = 1110 *)

11.4.3 Bit operators

11.4.3.1 AND and AND(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type	Х	Х	Х	Х

Bit-wise AND link of the AE/accumulator with one or two variables or constants. Bit-wise AND(...) linking with the AE/accumulator and the AE/accumulator which was previously formed in the bracket. Up to 6 bracket levels are possible. All values must belong to the same type of variable.

Example in IL:

```
LD 170
AND 204 (* AND link between 2 constants *)
(* Accumulator = 136 (See example in the table) *)
LD 170 (* Link between a constant and 2 variables.*)
AND Var1, Var2 (* Accumulator = 170dec AND Var1 AND Var2 *)
LD Var1
AND ( Var2 (* AE/Accumulator = Var1 AND ( Var2 OR Var3 ) *)
OR Var3
)
```


Example in ST:

Ergebnis := 170 AND 204; (* Result = 136dec *)

Var2	Var1	Result
0	0	0
0	1	0
1	0	0
1	1	1

Example: 170dec (1010 1010bin) AND 204dec (1100 1100bin) = (1000 1000bin) 136dec

11.4.3.2 ANDN and ANDN(

	SK 5xxP	SK 54xE	SK 53xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS
			SK 52xE		-		SK 190E	SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type	Х	Х	Х	Х

Bit-wise AND linking of the AE/accumulator with a negated operand. Bit-wise AND (...) linking of the AE/accumulator and the negated result of the bracket. Up to 6 bracket levels are possible. The values to be linked must belong to the same type of variable.

Example in IL:

```
LD 2#0000_1111
ANDN 2#0011_1010 (* ANDN link between 2 constants *)
(* Accu = 2#1111_0101 *)
LD 170 (* Link between a constant and 2 variables. *)
ANDN Var1, Var2 (* Accumulator = 170d ANDN Var1 ANDN Var2 *)
LD Var1
ANDN ( Var2 (* AE/Accumulator = Var1 ANDN ( Var2 OR Var3 ) *)
OR Var3
)
```

Var2	Var1	Result
0	0	1
0	1	1
1	0	1
1	1	0

Example: 170dec (1010 1010bin) AND 204dec (1100 1100bin) = (1000 1000bin) 136dec

11.4.3.3 NOT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type	Х	Х	Х	Х

Bit-wise negation of the accumulator.

Example in IL:

```
LD BYTE#10 (* Load the value 10dec into the ACCU in Byte format *)
NOT (* The value is resolved on the Bit level (0000 1010), *)
(* negated bit-wise (1111 0101) and then converted back *)
(* converted, result = 245dec *)
ST Var3 (* Save result as variable Var3 *)
```

Example in ST:

Ergebnis := not BYTE#10; (* Result = 245dez *)

11.4.3.4 OR and OR(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type	Х	Х	Х	Х

Bit-wise OR link of the AE/accumulator with one or two variables or constants. Bit-wise OR(...) linking with the AE/accumulator and the AE/accumulator which was previously formed in the bracket. Up to 6 bracket levels are possible. All values must belong to the same type of variable.

Example in IL:

```
LD 170
OR 204 (* OR link between 2 constants *)
LD 170 (* Link between a constant and 2 variables. *)
OR Var1, Var2 (* Accumulator = 170d OR Var1OR Var2 *)
LD Var1
OR ( Var2 (* AE/Accumulator = Var1 OR ( Var2 AND Var3 ) *)
AND Var3
)
```

```
Ergebnis := 170 or 204; (* Result = 238 *)
```


Var2	Var1	Result
0	0	0
0	1	1
1	0	1
1	1	1

11.4.3.5 ORN and ORN(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type	Х	Х	Х	Х

Bit-wise OR linking of the AE/accumulator with a negated operand. Bit-wise OR (...) linking of the AE/accumulator and the negated result of the bracket. Up to 6 bracket levels are possible. The values to be linked must belong to the same type of variable.

Example in IL:

```
LD 2#0000_1111
ORN 2#0011_1010 (* ORN link between 2 constants *)
(* Accumulator = 2#1100_0000 *)
LD 170 (* Link between a constant and 2 variables. *)
ORN Var1, Var2 (* Accumulator = 170d ORN Var1 ORN Var2 *)
LD Var1
ORN ( Var2 (* AE/Accumulator = Var1 ORN ( Var2 OR Var3 ) *)
OR Var3
)
```

```
Ergebnis := 2#0000_1111 ORN 2#0011_1010; (* Result = 2#1100_0000 *)
```

Var2	Var1	Result
0	0	1
0	1	0
1	0	0
1	1	0

11.4.3.6 ROL

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

Bit-wise rotation of the accumulator to the left. The content of the accumulator is shifted n times to the left, whereby the left bit is inserted again on the right.

Example in IL:

```
LD 175 (* Loads the value 1010_1111*)
ROL 2 (* Accumulator content is rotated 2x to the left *)
ST Value1 (* Saves the value 1011_1110 *)
```

Example in ST:

```
Ergebnis := ROL(BYTE#175, 2); (* Result = 2#1011_1110 *)
Ergebnis := ROL(INT#175, 2); (* Result = 16#C02B *)
```

11.4.3.7 ROR

	SK 5yyP	SK 54vE	SK 53xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS
3	SK SAAF		SK 52xE				SK 190E	SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

Bit-wise rotation of the accumulator to the right. The content of the accumulator is shifted n times to the right, whereby the right bit is inserted again on the left.

Example in IL:

```
LD 175 (* Loads the value 1010_1111*)
ROR 2 (* Accumulator content is rotated 2x to the right *)
ST Value1 (* Saves the value 1110_1011 *)
```

Example in ST:

Ergebnis := ROR(BYTE#175, 2); (* Result = 2#1110_1011 *)

11.4.3.8 S and R

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	X	X	Х	Х	X	X

	BOOL	BYTE	ÎNT	DINT
Data type	Х			

Sets and resets a boolean variable if the result of the previous link (the AE) was TRUE.

Example in IL:

ΓĽ) TRUE	(*	Loads	s tł	ne AB	C wi	th	TRU	JE	*)
S	Var1	(*	VAR1	is	set	to	TRU	JE '	*)	
R	Varl	(*	VAR1	is	set	to	FAI	SE	*)	

Example in ST:

Ergebnis := TRUE; Ergebnis := FALSE;

11.4.3.9 SHL

	SK 5xxP	SK 54xE	SK 53xE	On/On+	SK 2xxE	SK 2xxE-EDS	SK 180E	SK 155E-FDS
			SK 52xE				SK 190E	SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	ÎNT	DINT
Data type		Х	Х	Х

Bit-wise left shift of the accumulator. The content of the accumulator is shifted n times to the left and the bits which are pushed out are lost.

Example in IL:

```
LD 175 (* Loads the value 1010_1111*)
SHL 2 (* Accumulator content is shifted 2x to the left *)
ST Value1 (* Saves the value 1011_1100 *)
```

```
Ergebnis := SHL(BYTE#175, 2); (* Result = 2#1011_1100 *)
Ergebnis := SHL(INT#175, 2); (* Result = 16#2BC *)
```


11.4.3.10 SHR

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type		Х	Х	Х

Bit-wise right shift of the accumulator. The content of the accumulator is shifted n times to the right and the bits which are pushed out are lost.

Example in IL:

```
LD 175 (* Loads the value 1010_1111*)
SHR 2 (* Accumulator content is shifted 2x to the right *)
ST Value1 (* Saves the value 0010_1011 *)
```

Example in ST:

```
Ergebnis := SHR(BYTE#175, 2); (* Result = 2#0010_1011 *)
```

11.4.3.11 XOR and XOR(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type	Х			

Bit-wise "exclusive OR" link between the AE/accumulator and one or two variables or constants. The first value is located in the AE/accumulator and the second is loaded with the command or is within the brackets. The values to be linked must belong to the same type of variable.

Example in IL:

LD 2#0000_1111	(* XOR link between 2 constants *)
XOR 2#0011_1010	(* Accu = 2#0011_0101 *)
LD 170	(* Link between a constant and 2 variables. *)
XOR Var1, Var2	(* Accumulator = 170d XOR Var1 XOR Var2 *)
LD Var1 XOR (Var2 OR Var3)	(* AE/Accumulator = Varl XOR (Var2 OR Var3) *)

Example in ST:

Ergebnis := 2#0000_1111 XOR 2#0011_1010; (* Result = 2#0011_0101 *)

Var2	Var1	Result
0	0	0
0	1	1
1	0	1
1	1	0

11.4.3.12 XORN and XORN(

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type	Х			

Bit-wise Exclusive OR linking of the AE/accumulator with a negated operand. Bit-wise Exclusive OR (...) linking of the AE/accumulator and the negated result of the bracket. Up to 6 bracket levels are possible. The values to be linked must belong to the same type of variable.

Example in IL:

```
LD 2#0000_1111
XORN 2#0011_1010 (* XORN link between 2 constants *)
(* Accu = 2#1100_1010 *)
LD 170 (* Link between a constant and 2 variables. *)
XORN Var1, Var2 (* Accumulator = 170d XORN Var1 XORN Var2 *)
LD Var1
XORN ( Var2 (* AE/Accumulator = Var1 XORN ( Var2 OR Var3 ) *)
OR Var3
)
```

Example in ST:

Ergebnis := 2#0000_1111 XORN 2#0011_1010; (* Result = 2#1100_1010 *)

Var2	Var1	Result
0	0	1
0	1	0
1	0	0
1	1	1

11.4.4 Loading and storage operators (AWL)

11.4.4.1 LD

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type	Х	Х	Х	Х

Loads a constant or a variable into the AE or the accumulator.

Example in IL:

- LD 10 (* Loads 10 as BYTE *) LD -1000 (* Loads -1000 as INT *)
- LD Value1 (* Loads the variable Value1 *)

11.4.4.2 LDN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type	Х			

Loads a negated boolean variable into the AE.

Example in IL:

```
LDN Value1 (* Value1 = TRUE at AE = FALSE *)
ST Value2 (* Save to Value2 = FALSE *)
```

11.4.4.3 ST

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT	
Data type	Х	Х	Х	Х	

Saves the content of the AE/accumulator to a variable. The variable to be saved must match the previously loaded and processed data type.

Example in IL:

```
LD 100 (* Loads the value 1010 1111 *)
ST Value1 (* Accumulator content 100 is saved in Value1 *)
```


11.4.4.4 STN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type	Х			

Saves the content of the AE to a variable and negates it. The variable to be saved must match the previously loaded and processed data type.

Example in IL:

```
LD Value1 (* Value1 = TRUE at AE = TRUE *)
STN Value2 (* Save to Value2 = FALSE *)
```

11.4.5 Comparison operators

11.4.5.1 EQ

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type		Х	Х	Х

Compares the content of the accumulator with a variable or constant. If the values are equal, then AE is set to TRUE.

Example in IL:

```
LD Value1 (* Value1 = 5 *)
EQ 10 (* AE = Is 5 equal to 10 ? *)
JMPC NextStep (* AE = FALSE - program does not jump *)
ADD 1
NextStep:
ST Value1
```

```
(* Is value = 10 *)
if Value = 10 then
Value2 := 5;
end_if;
```


11.4.5.2 GE

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type		Х	Х	Х

Compares the content of the accumulator with a variable or constant. If the value in the accumulator is greater or equal to the variable or constant, then AE is set to TRUE.

Example in IL:

```
LD Value1 (* Value1 = 5*)
GE 10 (* Is 5 greater than or equal to 10? *)
JMPC NextStep (* AE = FALSE - program does not jump *)
ADD 1
NextStep:
ST Value1
```

Example in ST:

```
(* Is 5 greater than or equal to 10? *)
if Value >= 10 then
  Value := Value - 1
end_if;
```

11.4.5.3 GT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type		Х	Х	Х

Compares the content of the accumulator with a variable or constant. If the value in the accumulator is greater than the variable or constant, then AE is set to TRUE.

Example in IL:

```
LD Value1(* Value1 = 12 *)
GT 8 (* Is 12 greater than 8? *)
JMPC NextStep (* AE = TRUE - program jumps *)
ADD 1
NextStep:
ST Value1
```

```
(* Is 12 greater than 8? *)
if Value > 8 then
  Value := 0;
end_if;
```


11.4.5.4 LE

	SK 5xxP	SK 54xE	SK 53xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E	SK 155E-FDS
			3N 92XE				3K 190E	SK 1/9E-FD3
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type		Х	Х	Х

Compares the content of the accumulator with a variable or constant. If the value in the Accumulator is less than or equal to the variable or constant, then AE is set to TRUE.

Example in IL:

```
LD Value1 (* Value1 = 5*)
LE 10 (* Is 5 less than or equal to 10? *)
JMPC NextStep:
ST Value1
```

Example in ST:

```
(* Is Value less than or equal to 10?*)
if Value <= 10 then
  Value := 11;
end_if;</pre>
```

11.4.5.5 LT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type		Х	Х	Х

Compares the content of the accumulator with a variable or constant. If the value in the accumulator is less than the variable or constant the AE is set to TRUE.

Example in IL:

```
LD Value1 (* Value1 = 12 *)
LT 8 (* Is 12 less than 8 ? *)
JMPC NextStep (* AE = FALSE - program does not jump *)
ADD 1
NextStep:
ST Value1
```

```
(* Is Value less than 0? *)
if Value < 0 then
  Value := 0;
end_if;</pre>
```


11.4.5.6 NE

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type		Х	Х	Х

Compares the content of the accumulator with a variable or constant. If the value in the Accumulator is not equal to the variable or constant, then AE is set to TRUE.

Example in IL:

```
LD Valuel (* Value1 = 5 *)
NE 10 (*Is 5 not equal to 10 ?*)
JMPC NextStep (* AE = TRUE - program jumps *)
ADD 1
NextStep:
ST Value1
```

Example in ST:

```
if Value <> 5 then
Value := 5;
end_if;
```

11.5 Processing values

All analogue and digital inputs and outputs or bus setpoints and actual values can be read and processed by the PLC or can be set by the PLC (if they are output values). Access to the individual values is via the process values listed below. For all output values, the output (e.g. digital outputs or PLC setpoint) must be programmed so that the PLC is the source of the event. All process data is read in from the PLC by the device at the start of each cycle and is only written to the device at the end of the program. The following table lists all of the values which can be directly accessed by the PLC. All other process values must be accessed via the function blocks MC_ReadParameter or MC_WriteParameter.

11.5.1 Inputs and outputs

All process values which describe the I/O interface of the device are summarised here.

Name	Function	Standardisation	Туре	Access	Device
_0_Set_digital_output	Set digital outputs	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: DOUT 1 Bit 3: DOUT 2 Bit 4: DOUT 1 CU5-MLT Bit 5: DOUT 2 CU5-MLT Bit 6: DOUT 3 CU5-MLT Bit 7: DOUT 4 CU5-MLT Bit 8: dig. function AOUT	UINT	R/W	SK 5xxP

Name	Function	Standardisation	Туре	Access	Device
_0_Set_digital_output	Setzen digitaler Ausgänge	Bit 0: Mfr1 Bit 1: Mfr2	UINT	R/W	On/On+
_0_Set_digital_output	Set digital outputs	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: DOUT1 Bit 3: DOUT2 Bit 4: dig. function AOUT Bit 5: DOUT3 (Din7) Bit 6: Status word Bit 10 Bit 7: Status word Bit 10 Bit 7: Status word Bit 13 Bit 8: BusIO Bit0 Bit 9: BusIO Bit1 Bit 10: BusIO Bit1 Bit 10: BusIO Bit2 Bit 11: BusIO Bit3 Bit 12: BusIO Bit4 Bit 13: BusIO Bit5 Bit 14: BusIO Bit6 Bit 15: BusIO Bit7	UINT	R/W	SK 54xE
_0_Set_digital_output	Set digital outputs	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: DOUT1 Bit 3: DOUT2 Bit 4: dig. function AOUT Bit 5: vacant Bit 6: Status word Bit 10 Bit 7: Status word Bit 13 Bit 8: BusIO Bit0 Bit 9: BusIO Bit1 Bit 10: BusIO Bit2 Bit 11: BusIO Bit3 Bit 12: BusIO Bit4 Bit 13: BusIO Bit5 Bit 14: BusIO Bit6 Bit 15: BusIO Bit7	UINT	R/W	SK 52xE SK 53xE
_0_Set_digital_output	Set digital outputs	Bit 0: DOUT1 Bit 1: BusIO Bit0 Bit 2: BusIO Bit1 Bit 3: BusIO Bit2 Bit 4: BusIO Bit3 Bit 5: BusIO Bit4 Bit 6: BusIO Bit5 Bit 7: BusIO Bit6 Bit 8: BusIO Bit7 Bit 9: Bus PZD Bit 10 Bit 10: Bus PZD Bit 13 Bit 11: DOUT2	UINT	R/W	SK 2xxE SK 2xxE- FDS

Name	Function	Standardisation	Туре	Access	Device
_0_Set_digital_output	Set digital outputs	Bit 0: DOUT1 Bit 1: DOUT2 Bit 2: BusIO Bit0 Bit 3: BusIO Bit1 Bit 4: BusIO Bit2 Bit 5: BusIO Bit3 Bit 6: BusIO Bit4 Bit 7: BusIO Bit5 Bit 8: BusIO Bit6 Bit 9: BusIO Bit7 Bit 10: Bus PZD Bit 10 Bit 11: Bus PZD Bit 13	UINT	R/W	SK 180E SK 190E
_0_Set_digital_output	Set digital outputs	Bit 0: DOUT1 Bit 1: DOUT2 Bit 2: DOUT_BRAKE Bit 3: DOUT_BUS1 Bit 4: DOUT_BUS2	UINT	R/W	SK 155E- FDS SK 175E- FDS
_1_Set_analog_output	Set FI analogue output	10.0V = 100	BYTE	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE
_2_Set_external_ analog_out1	Set analogue output 1. IOE	10.0V = 100	BYTE	R/W	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_3_Set_external_ analog_out2	Set analogue output 2. IOE	10.0V = 100	BYTE	R/W	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+

Name	Function	Standardisation	Туре	Access	Device
_4_State_digital_outpu t	Status of digital outputs	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: DOUT 1 Bit 3: DOUT 2 Bit 4: DOUT 1 CU5-MLT Bit 5: DOUT 2 CU5-MLT Bit 6: DOUT 3 CU5-MLT Bit 7: DOUT 4 CU5-MLT Bit 8: dig. function AOUT Bit 9: vacant Bit 10: DOUT1 IOE1 Bit 11: DOUT2 IOE1 Bit 12: DOUT1 IOE2 Bit 13: DOUT2 IOE2 Bit 14: vacant Bit 15: vacant	INT	R	SK 5xxP
_4_State_digital_outpu t	Status of digital outputs	Bit 0: Mfr1 Bit 1: Mfr2	INT	R	On/On+
_4_State_digital_outpu t	Status of digital outputs	Bit 0: Mfr1 Bit 1: Mfr2 Bit 2: DOUT1 Bit 3: DOUT2 Bit 4: dig. function AOUT Bit 5: DOUT3 (Din7) Bit 6: Status word Bit 8 Bit 7: Status word Bit 9 Bit 8: BusIO Bit0 Bit 9: BusIO Bit1 Bit 10: BusIO Bit2 Bit 11: BusIO Bit3 Bit 12: BusIO Bit4 Bit 13: BusIO Bit5 Bit 14: BusIO Bit6 Bit 15: BusIO Bit7	INT	R	SK 54xE
_4_State_digital_outpu t	Status of digital outputs	P711	BYTE	R	SK 52xE SK 53xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_4_State_digital_outpu t	Status of digital outputs	Bit 0: DOUT1 Bit 1: DOUT2 Bit 2: DOUT_BRAKE Bit 3: DOUT_BUS1 Bit 4: DOUT_BUS2	BYTE	R	SK 155E- FDS SK 175E- FDS

Name	Function	Standardisation	Туре	Access	Device
_5_State_Digital_input	Status of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN1 CU5-MLT Bit 7: DIN2 CU5-MLT Bit 8: DIN3 CU5-MLT Bit 9 DIN4 CU5-MLT Bit 10 Safety DIN Bit 11 vacant Bit 12: Digital function AIN1 Bit 13: Digital function AIN2	INT	R	SK 5xxP
_5_State_Digital_input	Status of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4	INT	R	On/On+
_5_State_Digital_input	Status of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7 Bit 7: Digital function AIN1 Bit 8: Digital function AIN2 Bit 9: DIN8	INT	R	SK 54xE
_5_State_Digital_input	Status of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7	INT	R	SK 52xE SK 53xE

Name	Function	Standardisation	Туре	Access	Device
_5_State_Digital_input	Status of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: vacant Bit 5: Thermistor Bit 6: vacant Bit 7: vacant Bit 7: vacant Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 2xxE
_5_State_Digital_input	Status of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: AIN1 Bit 4: AIN2 Bit 5: Thermistor Bit 6: vacant Bit 7: vacant Bit 7: vacant Bit 8: DIN1 IOE 1 Bit 10: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 180E SK 190E
_5_State_Digital_input	Status of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: TF (thermistor) Bit 4: DIN-BUS1 (ASiI1) Bit 5: DIN-BUS2 (ASiI2) Bit 6: DIN-BUS3 (ASiI3) Bit 7: DIN-BUS4 (ASiI4) Bit 8: BDDI1 (ASIO3) Bit 9: BDDI2 (ASIO4) Bit 10: STO	INT	R	SK 155E- FDS SK 175E- FDS

Name	Function	Standardisation	Туре	Access	Device
_5_State_Digital_input	Status of digital inputs	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6/AIN1 Bit 6: DIN7/AIN2 Bit 7: Thermistor Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	INT	R	SK 2xxE-FDS
_6_Delay_digital_input s	Status of digital inputs according to P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN1 CU5-MLT Bit 7: DIN2 CU5-MLT Bit 8: DIN3 CU5-MLT Bit 9 DIN4 CU5-MLT Bit 10 vacant Bit 11 vacant Bit 12: Digital function AIN1 Bit 13: Digital function AIN2	INT	R	SK 5xxP
_6_Delay_digital_input s	Status of digital inputs according to P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7 Bit 7: Digital function AIN1 Bit 8: Digital function AIN2 Bit 9: DIN8	INT	R	SK 54xE
_6_Delay_digital_input s	Status of digital inputs according to P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4	INT	R	On/On+

Name	Function	Standardisation	Туре	Access	Device
_6_Delay_digital_input s	Status of digital inputs according to P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6 Bit 6: DIN7	INT	R	SK 52xE SK 53xE
_6_Delay_digital_input s	Status of digital inputs according to P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: AIN1 Bit 4: AIN2 Bit 5: Thermistor Bit 6: vacant Bit 7: vacant Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 15: DIN4 IOE 2	IZT	R	SK 2xxE SK 180E SK 190E
_6_Delay_digital_input s	Status of digital inputs according to P475	Bit 0: DIN1 Bit 1: DIN2 Bit 2: DIN3 Bit 3: DIN4 Bit 4: DIN5 Bit 5: DIN6/AIN1 Bit 6: DIN7/AIN2 Bit 7: Thermistor Bit 8: DIN1 IOE 1 Bit 9: DIN2 IOE 1 Bit 10: DIN3 IOE 1 Bit 11: DIN4 IOE 1 Bit 12: DIN1 IOE 2 Bit 13: DIN2 IOE 2 Bit 14: DIN3 IOE 2 Bit 14: DIN3 IOE 2	INT	R	SK 2xxE-FDS
_7_Analog_input1	Value of analogue input 1 (AIN1)	10.00V = 1000	INT	R	All
_8_Analog_input2	Value of analogue input 2 (AIN2)	10.00V = 1000	INT	R	All
_9_Analog_input3	Value of analogue function DIN2	10.00V = 1000	INT	R	SK 5xxP SK 54xE SK 155E- FDS SK 175E- FDS

Name	Function	Standardisation	Туре	Access	Device
_9_Analog_input3	Value of analogue function DIN2	10.00V = 4000h	INT	R	SK 2xxE SK 2xxE-FDS
_10_Analog_input4	Value of analogue function DIN3	10.00V = 1000	INT	R	SK 5xxP SK 54xE SK 155E- FDS SK 175E- FDS
_10_Analog_input4	Value of analogue function DIN3	10.00V = 4000h	INT	R	SK 2xxE SK 2xxE-FDS
_11_External_analog_ input1	Value of analogue input 1 (1.IOE)	10.00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_12_External_analog_ input2	Value of analogue input 2 (1.IOE)	10.00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_13_External_analog_ input3	Value of analogue input 1 (2.IOE)	10.00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_14_External_analog_ input4	Value of analogue input 2 (2.IOE)	10.00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_15_State_analog_ output	Status of analogue output	10.0V = 100	BYTE	R	SK 5xxP SK 54xE
_16_State_ext_analog _ out1	Status of analogue output (1. IOE)	10.00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E

Name	Function	Standardisation	Туре	Access	Device
_17_State_ext_analog _ out2	Status of analogue output (2. IOE)	10.00V = 1000	INT	R	SK 5xxP SK 54xE SK 2xxE SK 180E SK 190E
_18_Dip_switch_state	DIP switch status	Bit 0: DIP1 Bit 1: DIP2 Bit 2: DIP3 Bit 3: DIP4 Bit 4: DIP_I1 Bit 5: DIP_I2 Bit 6: DIP_I3 Bit 7: DIP_I4	INT	R	SK 155E- FDS SK 175E- FDS
_19_State_digital_inpu t_IOE	Status of digital inputs (IOE)	Bit 0: DIN1 IOE 2 Bit 1: DIN2 IOE 2 Bit 2: DIN3 IOE 2 Bit 3: DIN4 IOE 2 Bit 4: DIN1 IOE 1 Bit 5: DIN2 IOE 1 Bit 6: DIN3 IOE 1 Bit 7: DIN4 IOE 1	INT	R	SK 5xxP

11.5.2 PLC setpoint and actual values

The process values listed here form the interface from the PLC to the device. The function of the PLC setpoints is specified in (P553).

i Information

The process value PLC_control_word overwrites the function block MC_Power. The PLC setpoints overwrite the function blocks MC_Move.... und MC_Home.

Name	Function	Standardisation	Туре	Access	Device
_20_PLC_control_word	PLC control word	Corresponds to the USS profile	INT	R/W	All
_21_PLC_set_val1	PLC setpoint 1	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+

Name	Function	Standardisation	Туре	Access	Device
_22_PLC_set_val2	PLC setpoint 2	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_23_PLC_set_val3	PLC setpoint 3	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_24_PLC_set_val4	PLC setpoint 4	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS On/On+
_25_PLC_set_val5	PLC setpoint 5	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS On/On+

Name	Function	Standardisation	Туре	Access	Device
_26_PLC_additional _control_word 1	PLC additional control word 1	Special functionality for IO control via PLC. Bit0 Fixed frequency 1 Bit1 Fixed frequency 2 Bit2 Fixed frequency 3 Bit3 Fixed frequency 4 Bit4 Fixed frequency 5 Bit5 Jog frequency 5 Bit5 Jog frequency Bit6 Enable with motor potentiometer Bit7 Remove enable via analogue	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE-FDS SK 180E SK 190E On/On+
_27_PLC_additional _control_word2	PLC additional control word 2	Special functionality for IO control via PLC.Bit0Fixed frequency array Bit0Bit1Fixed frequency array Bit1Bit2Fixed frequency array Bit2Bit3Fixed frequency array Bit3Bit4Fixed frequency array Bit3Bit5Motor potentiometer function activatedBit6Increase motor potentiometer frequencyBit7Reduce motor potentiometer frequency	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE-FDS SK 180E SK 190E On/On+
_28_PLC_status_word	PLC status word	Corresponds to the USS profile	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+

Name	Function	Standardisation	Туре	Access	Device
_29_PLC_act_val1	PLC actual value 1	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_30_PLC_act_val2	PLC actual value 2	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_31_PLC_act_val3	PLC actual value 3	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_32_PLC_act_val4	PLC actual value 4	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS On/On+
_33_PLC_act_val5	PLC actual value 5	100% = 4000h	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS On/On+
_34_PLC_Busmaster_ Control_word	Master function control word (bus master function) via PLC	Corresponds to the USS profile	INT	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E

Name	Function	Standardisation	Туре	Access	Device
_35_PLC_32Bit_set_ val1	32Bit PLC setpoint - P553[1] = Low part of the 32Bit value - P553[2] = High part of the 32Bit value	_	LONG	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_36_PLC_32Bit_act_ val1	32Bit PLC actual value - PLC actual value 1 = Low part of the 32Bit value - PLC 2 = High part of the 32Bit value	-	LONG	R/W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_37_PLC_status_bits	Virtual status outputs of the PLC	Bit 0: PLC-DOUT1 Bit 1: PLC-DOUT2	INT	R/W	SK 155E-FDS SK 175E-FDS
_38_PLC_control_bits	Virtual control outputs of the PLC	Bit 0: PLC-DIN1 Bit 1: PLC-DIN2 Bit 2: PLC-DIN3 Bit 3: PLC-DIN4 Bit 4: PLC-DIN5 Bit 5: PLC-DIN6 Bit 6: PLC-DIN7 Bit 7: PLC-DIN8	INT	R/W	SK 155E-FDS SK 175E-FDS
_39_PLC_set_digital_ output_bus	Outgoing PLC Busl/O data	Bit 0: BusIO Bit0 Bit 1: BusIO Bit1 Bit 2: BusIO Bit2 Bit 3: BusIO Bit3 Bit 4: BusIO Bit4 Bit 5: BusIO Bit5 Bit 6: BusIO Bit6 Bit 7: BusIO Bit7 Bit 8: Flag 1 Bit 9: Flag 2 Bit 10: Status word Bit 11 Bit 11: Status word Bit 12	INT	R/W	SK 5xxP On/On+

11.5.3 Bus setpoints and actual values

These process values reflect all setpoints and actual values which are transferred to the device via the various bus systems.

Name	Function	Standardisation	Туре	Access	Device
_40_Inverter_status	FU status word	Corresponds to the USS profile	INT	R	All
_41_Inverter_act_val1	FU actual value 1	100% = 4000h	INT	R	All
_42_Inverter_act_val2	FU actual value 2	100% = 4000h	INT	R	All
_43_Inverter_act_val3	FU actual value 3	100% = 4000h	INT	R	All
_44_Inverter_act_val4	FU actual value 4	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_45_Inverter_act_val5	FU actual value 5	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_46_Inverter_lead_val1	Broadcast Master function Master value 1	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_47_Inverter_lead_val2	Broadcast Master function Master value 2	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_48_Inverter_lead_val3	Broadcast Master function Master value 3	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_49_Inverter_lead_val4	Broadcast Master function Master value 4	100% = 4000h	INT	R	SK 5xxP SK 54xE
_50_Inverter_lead_val5	Broadcast Master function Master value 5	100% = 4000h	INT	R	SK 5xxP SK 54xE

Name	Function	Standardisation	Туре	Access	Device
_51_Inverter_control_w ord	Resulting control word Bus	Corresponds to the USS profile	ÎNT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_52_Inverter_set_val1	Resulting main setpoint 1 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_53_Inverter_set_val2	Resulting main setpoint 2 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_54_Inverter_set_val3	Resulting main setpoint 3 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_55_Inverter_set_val4	Resulting main setpoint 4 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+
_56_Inverter_set_val5	Resulting main setpoint 5 Bus	100% = 4000h	INT	R	SK 5xxP SK 54xE On/On+

Name	Function	Standardisation	Туре	Access	Device
_57_Broadcast_set_val 1	Broadcast slave: Auxiliary setpoint 1	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E
_58_Broadcast_set_val 2	Broadcast slave: Auxiliary setpoint 2	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_59_Broadcast_set_val 3	Broadcast slave: Auxiliary setpoint 3	100% = 4000h	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_60_Broadcast_set_val 4	Broadcast slave: Auxiliary setpoint 4	100% = 4000h	INT	R	SK 5xxP SK 54xE
_61_Broadcast_set_val 5	Broadcast slave: Auxiliary setpoint 5	100% = 4000h	INT	R	SK 5xxP SK 54xE
_62_Inverter_32Bit_set _val1	Resulting main 32Bit main setpoint 1 Bus	- Low part in P546[1] - High part in P546[2]	LONG	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_63_Inverter_32Bit_act _val1	FI 32Bit actual value 1	- Low part in P543[1] - High part in P543[2]	LONG	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_64_Inverter_32Bit_lea d_val1	32Bit master value 1	- Low part in P502[1] - High part in P502[2]	LONG	R	SK 5xxP SK 54xE SK 2xxE SK 180E SK 190E

Name	Function	Standardisation	Туре	Access	Device
_65_Broadcast_32Bit_ set_val1	32Bit broadcast slave auxiliary set value 1	- Low part in P543[1] - High part in P543[2]	LONG	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_66_BusIO_input_bits	Incoming Bus I/O data	 Bit0 – 7 = Bus I/O In Bit 0 – 7 Bit 8 = Flag 1 Bit 9 = Flag 2 Bit 10 = Bit8 of Bus control word Bit 11 = Bit9 of Bus control word 	INT	R	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_67_BusIO_output_bits	Outgoing Bus I/O data	Bit0 = Bus / AS-i Dig Out1 Bit1 = Bus / AS-i Dig Out2 Bit2 = Bus / AS-i Dig Out3 Bit3 = Bus / AS-i Dig Out4 Bit4 = Bus / AS-i Dig Out4 Bit5 = Bus / 1.IOE Dig Out1 Bit5 = Bus / 1.IOE Dig Out2 Bit6 = Bus / 2.IOE Dig Out1 Bit7 = Bus / 2.IOE Dig Out2 Bit8 = Bit 10 Bus status word Bit9 = Bit 11 Bus status word	INT	R	SK 5xxP SK 54xE On/On+
_67_BusIO_output_bits	Outgoing Bus I/O data	Bit0 = Bus / AS-i Dig Out1 Bit1 = Bus / AS-i Dig Out2 Bit2 = Bus / AS-i Dig Out3 Bit3 = Bus / AS-i Dig Out4 Bit4 = AS-i Actuator 1 Bit5 = AS-i Actuator 2 Bit6 = Flag 1 Bit7 = Flag 2 Bit8 = Bit 10 Bus status word Bit9 = Bit 11 Bus status	INT	R	SK 53xE SK 52xE

Name	Function	Standardisation	Туре	Access	Device
_67_BusIO_output_bits	Outgoing Bus I/O data	Bit0 = Bus / AS-i Dig Out1 Bit1 = Bus / AS-i Dig Out2 Bit2 = Bus / AS-i Dig Out3 Bit3 = Bus / AS-i Dig Out4 Bit4 = Bus / IOE Dig Out1 Bit5 = Bus / IOE Dig Out2 Bit6 = Bus / 2nd IOE Dig Out1 Bit7 = Bus / 2nd IOE Dig Out2 Bit8 = Bit 10 Bus status word Bit9 = Bit 11 Bus status word	INT	R	SK 2xxE
_67_BusIO_output_bits	Outgoing Bus I/O data	Bit0 = Bus / AS-i Dig Out1 Bit1 = Bus / AS-i Dig Out2 Bit2 = Bus / AS-i Dig Out3 Bit3 = Bus / AS-i Dig Out4 Bit4 = Bus / AS-i Dig Out5 Bit5 = Bus / AS-i Dig Out6 Bit6 = Bus / 2nd IOE Dig Out1 Bit7 = Bus / 2nd IOE Dig Out2 Bit8 = Bit 10 Bus status word Bit9 = Bit 11 Bus status word	INT	R	SK 2xxE-FDS

11.5.4 ControlBox and ParameterBox

The ControlBox can be accessed via the process values listed here. This enables implementation of simple HMI applications.

1 Information

In order for the "key-states" to be displayed in the PLC, the ControlBox and ParameterBox must be in PLC display mode. Otherwise only the value "0" is displayed

Name	Function	Standardisation	Туре	Access	Device
_70_Set_controlbox_ show_val	ControlBox display value	Display value = Bit 29 – Bit 0 Decimal point = Bit 31 – Bit 30	DINT	R/W	All
_71_Controlbox_key_ state	ControlBox keyboard status	Bit 0: ON Bit 1: OFF Bit 2: DIR Bit 3: UP Bit 4: DOWN Bit 5: Enter	BYTE	R	All
_72_Parameterbox_ key_state	ParameterBox keyboard status	Bit 0: ON Bit 1: OFF Bit 2: DIR Bit 3: UP Bit 4: DOWN Bit 5: Enter Bit 6: Right Bit 7: Left	BYTE	R	All

11.5.5 Information parameters

The main actual values of the device are listed here.

Name	Function	Scaling	Туре	Access	Device
_80_Current_fault	Actual fault number	Error 10.0 = 100	BYTE	W	All
_81_Current_warning	Actual warning	Warning 10.0= 100	BYTE	W	All
_82_Current_reason_ FI_blocked	Actual reason for the switch-on inhibit state	Problem 10.0= 100	BYTE	W	All
_83_Input_voltage	Current mains voltage	100V = 100	INT	W	All
_84_Current_frequenz	Current frequency	10Hz = 100	INT	W	All

Name	Function	Scaling	Туре	Access	Device
_85_Current_set_ point_frequency1	Current setpoint frequency from the setpoint source	10Hz = 100	INT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_86_Current_set_ point_frequency2	Current inverter set point frequency	10Hz = 100	INT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_87_Current_set_ point_frequency3	Current set point frequency after ramp	10Hz = 100	INT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_88_Current_Speed	Actual calculated speed	100rpm= 100	INT	W	All
_89_Actual_current	Actual output current	10.0A = 100	INT	W	All
_90_Actual_torque_ current	Actual torque current	10.0A = 100	INT	W	All
_91_Current_voltage	Current voltage	100V = 100	INT	W	All
_92_Dc_link_voltage	Current DC link voltage	100V = 100	INT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_93_Actual_field_ current	Actual field current	10.0A = 100	INT	W	All
_94_Voltage_d	Actual voltage component d-axis	100V = 100	INT	W	All

Name	Function	Scaling	Туре	Access	Device
_95_Voltage_q	Actual voltage component q-axis	100V = 100	INT	W	All
_96_Current_cos_phi	Actual Cos(Phi)	0.80 = 80	BYTE	W	All
_97_Torque	Actual torque	100% = 100	INT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_98_Field	Actual field	100% = 100	BYTE	w	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_99_Apparent_power	Actual apparent power	1.00KW = 100	INT	W	All
_100_Mechanical_ power	Actual mechanical power	1.00KW = 100	INT	W	All
_101_Speed_encoder	Actual measured speed	100rpm= 100	INT	W	SK 5xxP SK 54xE SK 53xE SK 52xE On/On+
_102_Usage_rate_ motor	Actual usage rate of motor (current value)	100% = 100	INT	W	All
_103_Usage_rate_ motor_I2t	Actual usage rate of motor I2t	100% = 100	INT	W	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_104_Usage_rate_ brake_resistor	Actual brake resistor usage rate.	100% = 100	INT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+

Name	Function	Scaling	Туре	Access	Device
_105_Head_sink_temp	Actual heat sink temperature	100°C = 100	INT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_106_Inside_temp	Actual inside inverter temperature	100°C = 100	INT	w	SK 5xxP SK 54xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_107_Motor_temp	Actual motor temperature	100°C = 100	INT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 2xxE-FDS SK 180E SK 190E On/On+
_108_Actual_net_ frequency	Actual mains frequency	10Hz = 100	INT	W	SK 155E-FDS SK 175E-FDS
_109_Mains_phase_ sequence	Actual mains phase sequence	0=CW, 1=CCW	BYTE	W	SK 155E-FDS SK 175E-FDS
_141_Pos_Sensor_Inc	Position of incremental encoder	0.001 rotation	DINT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_142_Pos_Sensor_Ab s	Position of absolute encoder	0.001 rotation	DINT	w	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E
_143_Pos_Sensor_Uni	Position of universal encoder	0.001 rotation	DINT	W	SK 5xxP SK 54xE On/On+

Name	Function	Scaling	Туре	Access	Device
_144_Pos_Sensor_HT L	Position of HTL encoder	0.001 rotation	DINT	W	SK 5xxP SK 54xE On/On+
_145_Actual_pos	Current position	0.001 rotation	DINT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_146_Actual_ref_pos	Actual setpoint position	0.001 rotation	DINT	W	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
_147_Actual_pos_diff	Position difference between setpoint and actual value	0.001 rotation	DINT	w	SK 5xxP SK 54xE SK 53xE SK 52xE SK 2xxE SK 180E SK 190E On/On+
148 Pos_Sensor_SINCOS	Position of SINCOS encoder	0.001 rotation	DINT	W	SK 5xxP
_150_Direct_dc_link_ voltage	Current DC link voltage (unfiltered)	100V = 100	INT	W	SK 5xxP On/On+
_151_Direct_torque_ current	Actual torque current (filtering 20–40 ms)	Device-dependent scaling ¹ 1A = 100	INT	W	SK 5xxP On/On+
_152_Direct_field_ current	Actual field current (filtering 20–40 ms)	Device-dependent scaling ² 1A = 100	INT	W	SK 5xxP On/On+
_153_Factor_InFu_B	Factor for calculation of the actual torque or field current		INT	W	SK 5xxP On/On+

¹ The device supplies the actual torque current in a scaled form only. The actual value must be calculated in the PLC program.

Example in ST:

Value := INT_TO_DINT(_151_Direct_torque_current) * INT_TO_DINT(_153_Factor_InFu_B)) / DINT#819

² The device supplies the actual field current in a scaled form only. The actual value must be calculated in the PLC program.

Example in IL:

LD _153_Factor_InFu_B INT_TO_DINT ST Num_InFu LD _152_Direct_field_current INT_TO_DINT MUL Num_InFu DIV DINT#819 ST value

11.5.6 PLC errors

The device errors E23.0 to E24.7 can be set from the PLC program via the User Error Flags.

Name	Function	Standardisation	Туре	Access	Device
_110_ErrorFlags	Generates user error in device	Bit 0: E 23.0 Bit 1: E 23.1 Bit 2: E 23.2 Bit 3: E 23.3 Bit 4: E 23.4 Bit 5: E 23.5 Bit 6: E 23.6 Bit 7: E 23.7	BYTE	R/W	all
_111_ErrorFlags_ext	Generates user error in device	Bit 0: E 24.0 Bit 1: E 24.1 Bit 2: E 24.2 Bit 3: E 24.3 Bit 4: E 24.4 Bit 5: E 24.5 Bit 6: E 24.6 Bit 7: E 24.7	BYTE	R/W	all

11.5.7 PLC parameters

The PLC parameters P355, P356 and P360 can be directly accessed via this group of process data.

Name	Function	Standardisation	Туре	Access	Device
_115_PLC_P355_1	PLC INT parameter P355 [-01]	-	INT	R	all
_116_PLC_P355_2	PLC INT parameter P355 [-02]	-	INT	R	all
_117_PLC_P355_3	PLC INT parameter P355 [-03]	-	INT	R	all
_118_PLC_P355_4	PLC INT parameter P355 [-04]	-	INT	R	all
_119_PLC_P355_5	PLC INT parameter P355 [-05]	-	INT	R	all
_120_PLC_P355_6	PLC INT parameter P355 [-06]	-	INT	R	all
_121_PLC_P355_7	PLC INT parameter P355 [-07]	-	INT	R	all
_122_PLC_P355_8	PLC INT parameter P355 [-08]	-	INT	R	all
_123_PLC_P355_9	PLC INT parameter P355 [-09]	-	INT	R	all
_124_PLC_P355_10	PLC INT parameter P355 [-10]	-	INT	R	all
_125_PLC_P356_1	PLC LONG parameter P356 [-01]	-	DINT	R	all
_126_PLC_P356_2	PLC LONG parameter P356 [-02]	-	DINT	R	all
_127_PLC_P356_3	PLC LONG parameter P356 [-03]	-	DINT	R	all
_128_PLC_P356_4	PLC LONG parameter P356 [-04]	-	DINT	R	all
_129_PLC_P356_5	PLC LONG parameter P356 [-05]	-	DINT	R	all
_130_PLC_P360_1	PLC display parameter P360[-01]	-	DINT	R/W	all
_131_PLC_P360_2	PLC display parameter P360[-02]	-	DINT	R/W	all
_132_PLC_P360_3	PLC display parameter P360[-03]	-	DINT	R/W	all
_133_PLC_P360_4	PLC display parameter P360[-04]	-	DINT	R/W	all
_134_PLC_P360_5	PLC display parameter P360[-05]	-	DINT	R/W	all

NORDCON – Manual

Name	Function	Standardisation	Туре	Access	Device
_135_PLC_Scope_ Int_1	PLC scope display value 1	-	INT	R/W	all
_136_PLC_Scope_ Int_2	PLC scope display value 2	-	INT	R/W	all
_137_PLC_Scope_ Int_3	PLC scope display value 3	-	INT	R/W	all
_138_PLC_Scope_ Int_4	PLC scope display value 4	-	INT	R/W	all
_139_PLC_Scope_ Bool_1	PLC scope display value 5	-	INT	R/W	all
_140_PLC_Scope_ Bool_2	PLC scope display value 6	-	INT	R/W	all

11.6 Languages

11.6.1 Instruction list (AWL / IL)

11.6.1.1 General

Data types

The PLC supports the data types listed below.

Name	Required memory space	Value range
BOOL	1 Bit	0 to 1
BYTE	1 Byte	0 to 255
INT	2 Byte	-32768 to 32767
DINT	4 Byte	-2147483648 to 2147483647
LABEL_ADDRE SS	2 Byte	Jump marks

Literal

For greater clarity it is possible to enter constants for all data types in various display formats. The following table gives an overview of all possible variants.

11 PLC (Programmable Logic Controller)

Literal	Example	Number displayed in decimal
Bool	FALSE	0
	TRUE	1
	BOOL#0	0
	BOOL#1	1
Dual (Base 2)	2#01011111	95
	2#0011_0011	51
	BYTE#2#00001111	15
	BYTE#2#0001_1111	31
Oktal (Base 8)	8#0571	377
	8#05_71	377
	BYTE#8#10	8
	BYTE#8#111	73
	BYTE#8#1_11	73
Hexadecimal (Base 16)	16#FFFF	-1
	16#0001_FFFF	131071
	INT#16#1000	4096
	DINT#16#0010_2030	1056816
Integer (Base 10)	10	10
	-10	-10
	10_000	10000
	INT#12	12
	DINT#-100000	-100000
Time	TIME#10s50ms	10.050 seconds
	T#5s500ms	5.5 seconds
	TIME#5.2s	5.2 seconds
	TIME#5D10H15M	5days+10hours+15minutes
	T#1D2H30M20S	1day+2hours+30minutes+20seconds

Comments

It is advisable to provide the sections of the program with comments in order to make the PLC program understandable at a later date. In the application program these comments are marked by starting with the character sequence "(*" and finishing with "*)" as shown in the following examples.

Example:

```
(* Comment about a program block *)
LD 100 (* Comment after a command *)
ADD 20
```

Jump marks

With the aid of the operators JMP, JMPC or JMPCN whole sections of the program can be bypassed. A jump mark is given as the target address. With the exception of diacritics and " β " it may contain all letters, the numbers 0 to 9 and underscores; other characters are not permitted. The jump mark is terminated with a colon. This may stand on its own. There may also be further commands after in the same line after the jump mark.

Possible variants may appear as follows:

Example:

```
Jump mark:
LD 20
This_is_a_jumpmark:
ADD 10
MainLoop: LD 1000
```

A further variant is the transfer of a jump mark as a variable. This variable must be defined as type LABLE_ADDRESS in the variable table, then this can be loaded into the variable 'jump marks'. With this, status machines can be created very simply, see below.

Example:

```
LD FirstTime
JMPC AfterFirstTime
(* The label address must be initialized at the beginning *)
LD Address 1
ST Address Var
LD TRUE
ST FirstTime
AfterFirstTime:
JMP Address Var
Address 1:
LD Address 2
ST Address_Var
JMP Ende
Address 2:
LD Address 3
ST Address_Var
JMP Ende
Address 3:
LD Address 1
ST Address_Var
Ende:
```

Function call-ups

The Editor supports one form of function call-ups. In the following version, the function CTD is called up via the instance I_CTD. The results are saved in variables. The meaning of the functions used below is described in further detail later in the manual.

Example

LD 10000 ST I_CTD.PV LD LoadNewVar ST I_CTD.LD LD TRUE ST I_CTD.CD CAL I_CTD LD I_CTD.Q ST ResultVar LD I_CTD.CV ST CurrentCountVar

Bit-wise access to variables

A simplified form is possible for access to a bit from a variable or a process variable.

Command	Description
LD Var1.0	Loads Bit 0 of Var1 into the AE
ST Var1.7	Stores the AE on Bit 7 of Var1
EQ Var1.4	Compares the AE with Bit 4 of Var1

11.6.2 Structured text (ST)

Structured text consists of a series of instruction, which are executed as in plain language ("IF..THEN..ELSE) or in loops (WHILE.. DO).

Example:

```
IF value < 7 THEN
WHILE value < 8 DO
value := value + 1;
END_WHILE;
END_IF;</pre>
```

11.6.2.1 Common

Data types in ST

The PLC supports the data types listed below.

Name	Memory required	Value range
BOOL	1 Bit	0 to 1
BYTE	1 Byte	0 to 255
INT	2 Byte	-32768 to 32767
DINT	4 Byte	-2,147,483,648 to 2,147,483,647

i Information

For numbers it is advisable to state the data type in order to create an efficient PLC program, e.g.: VarInt := INT#-32768, VarDINT := DINT#-2147483648.

Assignment operator

On the left hand side of an assignment there is an operand (variable, address) to which the value of an expression on the right hand side is assigned with the assignment operator "=".

Example:

Var1 := Var2 * 10;

After execution of this line, Var1 has ten times the value of Var2.

Call-up of function blocks in ST

A function block is called in ST by writing the name of the instance of the function block and then assigning the values of the parameters in brackets. In the following example a timer is called up with assignment of its parameters IN and PT Then the result variable Q is assigned to the variable A.

The result variable is accessed as in IL with the name of the function block, a following period and the name of the variable.

Example:

```
Timer(IN := TRUE, PT := 300);
A := Timer.Q;
```


Evaluation of expressions

The evaluation of the expression is performed by processing the operators according to certain linking rules. The operator with the strongest link is processed first and then the operator with the next strongest link, etc. until all of the operators have been processed. Operators with links of the same strength are processed from left to right.

The table below shows the ST operators in the order of the strength of their links:

Operation	Symbol	Link strength
Brackets	(Expression)	Strongest
Function call	Function name (parameter list)	
Negated complement formation	NOT	
Multiply Divide Modulus AND	* / MOD AND	
Add Subtract OR XOR	+ - OR XOR	
Compare Equality Inequality	<,>,<=,>= = <>	Light

11.6.2.2 Procedure

Return

The RETURN instruction can be used to jump to the end of the program, for example, depending on a condition.

IF

With the IF instruction, a condition can be tested and instructions carried out depending on this condition.

Syntax:

The part in the curly brackets {} is optional. If <Boolean_Expression1> is TRUE, then only the <IF_Instructions> are executed and none of the other instructions.. Otherwise, starting with

NORDCON - Manual

<Boolean_Expression2>, the boolean expressions are evaluated in sequence until one of the expressions is TRUE. Then, only the expressions following this boolean expression and before the next ELSE or ELSIF are evaluated. If none of the boolean expressions is TRUE, only the <ELSE Instructions> are evaluated.

Example:

```
IF temp < 17 THEN
Bool1 := TRUE;
ELSE
Bool2 := FALSE;
END IF;
```

CASE

With the CASE instruction, several conditional instructions with the same condition variables can be combined into a construct.

Syntax:

A CASE instruction is processed according to the following pattern:

- If the variable in <Var1> has the value <Value i>, the instruction <Instruction i> is executed.
- If <Var 1> does not have any of the stated values, the <ELSE instruction> is executed.
- If the same instruction is to be executed for several values of the variable, these values can be written separately in sequence, separated with commas as the condition of the common instruction.
- If the same instruction is to be executed for a range of values of the variable, the initial value and the end value can be written separated by a colon as the condition for the common instruction.

Example:

```
CASE INT1 OF
1, 5:
BOOL1 := TRUE;
BOOL3 := FALSE;
2:
BOOL2 := FALSE;
BOOL3 := TRUE;
10..20:
BOOL1 := TRUE;
BOOL1 := TRUE;
BOOL3:= TRUE;
ELSE
BOOL1 := NOT BOOL1;
BOOL2 := BOOL1 OR BOOL2;
END_CASE;
```


FOR loop

Repetitive processes can be programmed with the FOR loop.

Syntax:

The part in the curly brackets {} is optional. The <Instructions> are executed as long as the counter <INT-Var> is not larger than the <END_VALUE>. This is checked before the execution of the <Instructions> so that the <Instructions> are never executed if the <INIT_VALUE> is larger than the <END_VALUE>. Whenever the <Instructions> are executed, the <INIT-Var> is increased by a <Step size>. The step size can have any integer value. If this is missing, it is set to 1. The loop must terminate, as <INT_Var> is larger.

Example:

```
FOR Zaehler :=1 TO 5 BY 1 DO
Var1 := Var1 * 2;
END_FOR;
```

REPEAT loop

The REPEAT loop is different from the WHILE loop in that the termination condition is only tested after the loop has been executed. As a result, the loop must be run through at least once, regardless of the termination condition.

Syntax:

```
REPEAT
<Instruction>
UNTIL
<Boolean Expression>
END REPEAT;
```

The <Instructions> are executed until the <Boolean Expression> is TRUE. If the <Boolean Expression> is TRUE with the first evaluation, the <Instructions> are executed exactly once. If the <Boolean Expression> is never TRUE, the <Instructions> will be executed endlessly, which will create a runtime error.

1 Information

The programmer must ensure that no endless loops are created by changing the condition in the instruction part of the loop, for example a counter which counts upwards or downwards.

Example:

```
REPEAT
Var1 := Var1 * 2;
Count := Count - 1;
UNTIL
Count = 0
END_REPEAT
```


WHILE loop

The WHILE loop can be used in the same way as the FOR loop, with the difference that the termination condition can be any boolean expression. This means that a condition is stated, which, if it is true, will result in the execution of the loop.

Syntax:

```
WHILE <Boolean Expression> DO
    <Instructions>
END WHILE;
```

The <Instructions> are executed repeatedly for as long as the <Boolean_Expression> is TRUE. If the <Boolean_Expression> is FALSE in the first evaluation, the <Instructions> will never be executed. If the <Boolean_Expression> is never FALSE, the <Instructions> will be repeated endlessly.

i Information

The programmer must ensure that no endless loops are created by changing the condition in the instruction part of the loop, for example a counter which counts upwards or downwards.

Example:

```
WHILE Count <> 0 DO
Var1 := Var1*2;
Count := Count - 1;
END WHILE
```

Exit

If the EXIT instruction occurs in a FOR, WHILE or REPEAT loop, the innermost loop will be terminated, regardless of the termination condition.

11.7 Jumps

11.7.1 JMP

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х

Unconditional jump to a jump mark.

Example AWL:

```
JMP NextStep (* Unconditional jump to NextStep *)
ADD 1
NextStep:
ST Value1
```

11.7.2 JMPC

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х

Conditional jump to a jump point If AE = TRUE, the command JMPC jumps to the stated jump point.

Example AWL:

```
LD 10
JMPC NextStep (* AE = TRUE - program jumps *)
ADD 1
NextStep:
ST Value1
```

11.7.3 JMPCN

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х

Conditional jump to a jump point JMPCN jumps if the AE register = FALSE. Otherwise the program continues with the next instruction.

Example AWL:

```
LD 10
JMPCN NextStep (* AE = TRUE - program does not jump *)
ADD 1
NextStep:
ST Value1
```

11.8 Type conversion

11.8.1 BOOL_TO_BYTE

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	X	Х	Х

	BOOL	BYTE	INT	DINT
Data type	Х			

Converts the data type of the AE from BOOL to BYTE. If the AE is FALSE, the accumulator is converted to 0. If the AE is TRUE, the accumulator is converted to 1.

Example in IL:

```
LD TRUE
BOOL_TO_BYTE (* AE = 1 *)
```

Example in ST:

```
Ergebnis := BOOL_TO_BYTE(TRUE); (* Result = 1 *)
```

11.8.2 BYTE_TO_BOOL

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type		Х		

Converts the data type from BYTE to BOOL. As long as BYTE is not equal to zero, this always gives the conversion result TRUE.

Example in IL:

```
LD 10
BYTE_TO_BOOL (* AE = TRUE *)
```

Example in ST:

```
Ergebnis := BYTE_TO_BOOL(10); (* Result = TRUE *)
```

11.8.3 BYTE_TO_INT

	SK 5xxP	SK 54xE	SK 53xE	On/On+	SK 2xxE	SK 2xxE-EDS	SK 180E	SK 155E-FDS
	SN 5XXP 5N 54		SK 54XE SK 52xE				SK 190E	SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type		Х		

Converts the data type from BYTE to INT. The BYTE is copied into the Low component of the INT and the High component of INT is set to 0.

Example in IL:

LD 10 BYTE_TO_INT (* Accumulator = 10 *)

Example in ST:

Ergebnis := BYTE_TO_INT(10); (* Result = 10 *)

11.8.4 DINT_TO_INT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type				Х

Converts the data type from DINT to INT. The High component of the DINT value is not transferred.

Example in IL:

```
LD 200000

DINT_TO_INT (* Accumulator = 3392 *)

LD DINT# -5000

DINT_TO_INT (* Accumulator = -5000 *)

LD DINT# -50010

DINT_TO_INT (* Accumulator = 15526 *)
```

Example in ST:

Ergebnis := DINT_TO_INT(200000); (* Result = 3392 *)
Ergebnis := DINT_TO_INT(-5000); (* Result = -5000 *)
Ergebnis := DINT_TO_INT(-50010); (* Result = 15526 *)

11.8.5 INT_TO_BYTE

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type			Х	

Converts the data type from INT to BYTE. Here, the High component of the INT value is not transferred. Prefixes are lost as the BYTE type does not have prefixes.

NORDCON - Manual

Example in IL:

```
LD 16#5008
INT_TO_BYTE (* Accumulator = 8 *)
```

Example in ST:

Ergebnis := INT_TO_BYTE(16#5008); (* Result = 8 *)

11.8.6 INT_TO_DINT

	SK 5xxP	SK 54xE	SK 53xE SK 52xE	On/On+	SK 2xxE	SK 2xxE-FDS	SK 180E SK 190E	SK 155E-FDS SK 175E-FDS
Availability	Х	Х	Х	Х	Х	Х	Х	Х

	BOOL	BYTE	INT	DINT
Data type			Х	

Converts the data type from INT to DINT. The INT is copied into the Low component of the DINT and the High component of the DINT is set to 0.

Example in IL:

```
LD 10
INT_TO_DINT (* Accumulator = 10 *)
```

Example in ST:

Ergebnis := INT_TO_DINT(10); (* Result = 10 *)

11.9 PLC Error messages

Error messages cause the device to switch off, in order to prevent a device fault. With PLC error messages execution by the PLC is stopped and the PLC goes into the status "PLC Error". With other error messages the PLC continues operation. The PLC restarts automatically after the error has been acknowledged.

The PLC continues to operate with PLC User Fault 23.X and 24.X!

SimpleB	ox	Fault			
Group	Details in P700[-01] / P701		Remedy		
E022	22.0	No PLC program	The PLC has been started but there is no PLC program in the device - Load PLC program into the FI		
	22.1	PLC program is faulty	The checksum check via the PLC program produced an error. - Restart the device (Power ON) and try again - Alternatively, reload PLC program		

11 PLC (Programmable Logic Controller)

SimpleB	ох	Fault			
Group	Details in P700[-01] / P701	Text in the ParameterBox	Cause Remedy		
	22.2	Incorrect jump address	Program error, behaviour as for Error 22.1		
	22.3	Stack overflow	More than 6 bracket levels were opened during the run time of the program - Check the program for run time errors		
	22.4	Max. PLC cycles exceeded	The stated maximum cycle time for the PLC program was exceeded - Change the cycle time or check the program		
	22.5	Unknown command code	A command code in the program cannot be executed because it is not known. - Program error, behaviour as for Error 22.1 - Version of the PLC and the NORDCON version do not match		
	22.6	PLC write access	The program content has been changed while the PLC program was running		
	22.9	PLC Error	The cause of the fault cannot be precisely determined - Behaviour as in Error 22.1		
E023/ E024	23.0 to 23.7	PLC User Fault 1 to 8	This error can be triggered by the PLC program in order to externally indicate problems in the execution of the		
24.0 to 24.7		PLC User Fault 9 to 16	PLC program. Triggered by writing the process variable "ErrorFlags".		

12 Project Mode

12.1 General

The project mode is an extension of the normal mode. It is deactivated by default and must be activated in the settings. The mode allows the user to manage a project. Projects can be loaded and saved. A project comprises the devices including their data (parameters and PLC program), links to external parameter files or PLC programs, and the application's layout. Upon restarting NORDCON, the last saved project is loaded. If no project was found, a new project is created. The project mode was developed for the following application:

Menu item	Name	Description
File	New project	The action creates a new project.
	Open project	The action opens a file selection dialogue and the user must select a project file (*.ncpx).
	Save project	The action opens a file selection dialogue and the user specifies a name for the project file (*.ncpx). The project is then saved under this name.
	Save all	The action saves the project with the current name.
Project	Send all data	The action sends all parameters and the PLC program to the devices.
	Read all data	The action loads all parameters from the devices and saves them in the project file. Additionally, the PLC program in the device is compared to the one in the project. If they are not identical, a warning is issued in the log.
	Remove parameters	The action deletes the parameters for the selected device from the project.
	Remove PLC program	The action deletes the PLC program for the selected device from the project.
	Add PLC program	The action adds a saved PLC program for the selected device.
	Export parameters	The action exports all parameters for the selected device to a file.
	Export PLC program	The action exports the PLC program for the selected device to a file.
PLC	Save	The action saves the PLC in the project file.
	Save as	The action opens a file selection dialogue and the user must select a file name. The PLC program is then saved in a separate file.
Parametrize	Save	The action saves the parameters in the project file.
	Save as	The action opens a file selection dialogue and the user must select a file name. The parameters are then saved in a separate file.

12.2 "HMI"

12.3 "Save and restore"

12.2 HMI

The project mode is ideally suitable for good visualisation. The user connects the PC to the system and starts the device search (Bus scan Ctrl. F5). After the device search is complete, the user can place the required display elements for the device in the work area, e.g. parameter window, oscilloscope or control window. After this, the project must be saved. After the project has been opened, the devices and the layout are restored. This enables the user to always work with the same user interface.

i Information

When a project is loaded, it is not checked whether the devices which are contained in the project are actually connected. Communication errors may result if other devices are connected to the bus. Please take care that you always use the same device for the communication connection if you use the system bus.

12.3 Save and restore

The project mode can also be used to save and restore parameters and PLC programs. The list of devices used can be further restricted after a device search (bus scan). By deactivating the device in the device overview, a device can be excluded from saving and restoring.

The procedure may take several minutes, as depending on the particular system, the device list may contain several devices. The progress of the action is displayed in a separate window. NORDCON cannot be used during this process.

1 Information

When a project is loaded, it is not checked whether the devices which are contained in the project are actually connected. Communication errors may result if other devices are connected to the bus. Please take care that you always use the same device for the communication connection if you use the system bus.

Save

After a device search (bus scan) the action "Read all Data" reads the parameters of all of the devices which are found. The parameters must first be saved in NORDCON and then saved manually in the project file (Save All). Three options are available to users for the action "Read all Data". These options can be activated or deactivated in the settings dialogue.

Option	Description
Delete all data records on cancellation	If this option is activated, the data records for all of the devices which are included in the project are deleted when the function "Read all Data" is cancelled. Otherwise, not all parameters will be read out and the data in the project file is incomplete.
Delete incomplete data records	If this option is enabled, the data record for a device is deleted if an error occurs during the function "Read all Data".
Delete data records from devices not ready for communication	If this option is enabled, the data record for a device is deleted if there is no communication with the device during execution of the function "Read all Data".

PLC programs cannot be read out in the current version of NORDCON. Because of this, the programs of the device and the project file are compared during the action "Read all Data". If they are not identical, a warning is given in NORDCON. This action is skipped if no PLC program is saved for a device.

If device parameters are saved in the project file, this is indicated with a special device symbol in the project structure. The same applies for the PLC program. However, the existence of the device symbol does not provide any information with regard to the current status and completeness of the data. After

NORDCON - Manual

readout, the parameters can be edited with the parameter editor. The user selects a device in the project tree and opens the parameter editor (Parameterise F7). The parameters can be read or deleted in the editor. The action "Save" saves the parameters for the selected device in the project and also saves the project on the hard drive. If the parameter is to be saved in a separate file, the action "Save as" must be executed.

1 Information

If errors occur during "Read all Data", these are noted in the log and the backup is continued. All of the parameters which are noted in the log are not saved in the project file. We recommend that the fault is remedied and a new backup carried out for the device.

Restore

This function can be executed after opening the project via the main menu. For this, the parameters which are saved in the project file are sent to the devices. As standard, all parameters are always sent to the devices. However, in most cases this is not advisable and only takes up time. To reduce the number of parameters, the user must enable the option "Only transfer enabled parameters" and enable the required parameters in the parameter editor.

In the second step, the PLC programs which are saved in the project are loaded, translated and also sent to the device. As in normal mode, the PLC program for a device is edited with the PLC editor. When the editor is opened, the PLC program is automatically loaded from the project file. After editing, the program can be saved again in the project file with the action "Save". If the PLC program is to be saved in a separate file in this mode, the action "Save as" must be executed.

1 Information

If errors occur during the process, this is noted in the log and the process is continued All of the parameters which are noted in the log could not be saved in the device. The same applies for the PLC programs. We recommend that the fault is remedied and the action restarted.

13 Project Download

The automated project download enables downloading of parameters and PLC programs to one or more devices via a batch file. The result of the transfer is saved in a log file and can be subsequently evaluated. The parameters and PLC programs must be previously saved in a project. For this, the project mode must be activated in NORDCON. After the device search, all devices which are found are displayed in the project tree. Each selected device parameter and/or a PLC program can now be allocated.

i Information

PLC programs can only be allocated to devices with PLC functionality!

To enable a faster download of the project, only the required parameters may be transferred. For this, only a value for these parameters can be assigned in the parameter editor.

To configure the project download, a batch file is saved in the installation directory of NORDCON. This file must be copied and adapted accordingly. The following transfer parameters exist for the function:

Transfer parameter	Description
AUTODOWNLOAD=[project file]	This transfer parameter activates the project download. The path to the project file must be entered after the "equal" sign.
	Example:
	"AUTODOWNLOAD=c:\Projekt_Starter.ncpx"
CONNECTIONSTRING=[ID=1, PORTNR=[COMx (x=serial port number)], BAUDRATE=[baud	This transfer parameter specified the communication parameters. If this parameter is not transferred, the settings from the project are used.
rate]]	Example:
(Optional)	"CONNECTIONSTRING=ID=1,PORTNR=COM1, BAUDRATE=38400"
AUTOLOG=[log file]	This transfer parameter specifies the path for the log file. A log file is not created if this parameter is not transferred.

14 Firmware

14.1 Serial interface

14.1.1 How to update the firmware

Perform the following steps:

1.Start NORDCON.

2.Carry out a device search.

N	ð										
File	Start	Device	Project	Me	ssages	View	r				
	S)			Х	🗑 Remove	∧ Up	+	Ċ	\downarrow
Device search	Connect	Communi	ication	Paste	Сору	Cut	🔁 Select all	∨ Down	Add	Standard	Import
Start					E	dit			Dashboard	1	
=			8	Dashb	oard						
Serial USS											

3.Select the desired device in the list of devices.

4.Start the firmware update program via the menu item "Device -> Firmware update".

File Start Device Project	Messages View		
	[□] □ V III Remove	~ Up	
Device Disconnect Communication	Paste Conv. Cut. Et Salastall		
search	tone copy out up select all	V Down	
Start	Edit		
[[00] 55xP 1 1kW/230V/1			
	Save	Ctrl+S	
	Save As		
	⊏⊉ Rename		
	& Disconnect	F2	
	↓↑ Type of communication		
	Communication		
	Parameter transfer from device	F3	
	Parameter transfer to device	F4	
	D PLC program transfer to device and	save	
	Select motor		
	© Control	F6	
	Remote Control	F8	
	=== <u>P</u> arametrize	F7	
	✓ Oscilloscope		
	O PLC	•	
	Service	+ + F	firmware update
		19 F	Reset password
		ا	leset safety passw

5.Click on "Connect".

6.Carefully read the warning information and confirm with the "I accept" button.

7.Use the "..." button to select a firmware file.

8.Select the firmware file and confirm with "Open".

NORDCON - Manual

Öffnen			? 🗙
Suchen in:	🗀 Firmware	✓ ← €	•
Firmware	5x0E Steuerkarte_2_1R0 540E Steuerkarte_2_1R0		
Dateiname: Dateityp:	Firmware 540E Steuerkarte	2_1R0 0	ffnen

9.Start the firmware transfer with the "Start" button.

i Information

The firmware can only be updated if the device has the address 0 and the baud rate is set to 38400 bits/s.

i Information

If the firmware transfer is interrupted or is not carried out correctly, restart the device. If the device is then not found in a bus scan, afterwards, the firmware updated program (FirmwareUpd.exe or FirmwareUpd3.exe with SK5xxP) can also be started manually. The programs are located in the main directory of NORDCON.

14.1.2 Firmware update program

1. Settings

No.	Description
1	In the selection box, the user specifies the COM port of the PC to which the device is connected. If the program was called up via NORDCON, this parameter does not need to be set.
2	For some USB to RS232 converters, this setting may enable more stable communication. Only select this setting if you have problems with the connection.
3	The "Connect" button establishes a connection to the connected device. If a device was found, the LED (4) illuminates green and the firmware download window opens.
4	The LED indicates the connection status. Grey - Connection not yet established. Green - The program is connected to a device. Red - No device found.
5	This option activates the update of the firmware via the system bus.
6	In this selection box, specify the transfer speed between the PC and the connected device.
7	In this selection box, specify the mapped USS address of the device.

2. Device data

No.	Description
1	This field indicates whether the connected device supports firmware updates. If this is not the case, the LED next to the field is red.
2	This field displays the device family of the connected device. If a device cannot be detected, the LED next to the field is red, and a firmware update is not possible.
3	This field displays the version number of the connected device.
4	This field displays the status of the connected device. If the device is enabled, the LED next to the field is red and a firmware update is not possible.

3. Select firmware file

No.	Description
1	This field displays the status of the currently loaded firmware. If the firmware file cannot be loaded or if the firmware does not match the connected device, the LED next to the field is red. A firmware update is not possible.
2	This field displays the version information for the currently loaded firmware.

NORDCON – Manual

No.	Description
3	This field displays the device family which is supported by the currently loaded firmware.
4	Clicking the "" button opens a file selection dialogue. The user can select a firmware file in the window. The file name is applied by clicking "Open" and is then saved in the program configuration file.

4. Update firmware

No.	Description
1	Press the "Start" button to start the firmware update. If the button is not active, the selected firmware cannot be loaded to the device.
2	Press the "Cancel" button to cancel a started update. Cancellation is only possible during the initialisation phase.
3	The download window cannot be closed during an update. Before or after a download, the user can cancel the update by pressing the "Close" button.
4	The progress indicator displays the progress of the update and the current status.
5	After the update, the result is displayed in the "Summary" field.

14.1.3 Firmware update via system bus

The system bus is a bus developed by NORD on the basis of the CAN bus. The bus is available for all SK2xxE and SK5xxE with an internal CAN interface, as well as for various additional modules. Up to four frequency inverters, each with 2 additional modules and a CANopen encoder, and a bus module can be connected simultaneously, so that in the maximum configuration 17 devices are connected to the system bus. The protocol used for the system bus corresponds to CANopen. The CAN addresses for the individual devices have a fixed allocation in the system bus and cannot be changed.

All NORD modules connected to the system bus can be visualised and parameterised via a participant with an RS232/RS485 interface using NORDCON. For this, the communication requests are tunnelled via the device which is connected to NORDCON or the firmware update program. The following mapping procedure is used for tunnelling the requests:

USS address	Module
0	This address must be set for the module to which NORDCON is connected.
1	Frequency inverter 1 (CAN ID: 32)
2	Frequency inverter 2 (CAN ID: 34)
3	Frequency inverter 3 (CAN ID: 36)
4	Frequency inverter 4 (CAN ID: 38)
10	Additional module 1 for frequency inverter 1 (I/O extension)
11	Additional module 1 for frequency inverter 2 (I/O extension)
12	Additional module 1 for frequency inverter 3 (I/O extension)
13	Additional module 1 for frequency inverter 4 (I/O extension)
19	Device after cancelled firmware update
20	Additional module 2 for frequency inverter 1 (I/O extension)
21	Additional module 2 for frequency inverter 2 (I/O extension)

USS address	Module
22	Additional module 2 for frequency inverter 3 (I/O extension)
23	Additional module 2 for frequency inverter 4 (I/O extension)
30	Bus module

The following devices support tunnelling of firmware updates:

Device	Version
SK 1xxE	All
SK 2xxE	V1.3 and above
SK 5xxE	V2.0 and above
SK 540E	V2.0 and above
SK TU4-DEV	V1.4 and above
SK TU4-CAO	V2.2 and above
SK TU4-PBR	V1.2 and above
SK TU4-POL	All
SK TU4-PNT	All
SK TU4-IOE	V1.2 and above
SK TU4-EIP	All

The following devices support firmware updates via system bus:

Device	Version
SK 1xxE	All
SK 540E	V2.0 and above
SK TU4-DEV, SK CU4-DEV	V1.4 and above
SK TU4-CAO, SK CU4-CAO	V2.2 and above
SK TU4-PBR, SK CU4-PBR	V1.2 and above
SK TU4-POL, SK CU4-POL	All
SK TU4-PNT, SK CU4-PNT	All
SK TU4-IOE, SK CU4-IOE	V1.2 and above
SK TU4-EIP, SK CU4-EIP	All

14.1.4 How to update the firmware (NORDAC PRO)

Perform the following steps:

- 1. Start NORDCON.
- 2. Carry out a device search.

i Information

The firmware update can only be done via the device's RJ12 interface. Additionally, the device's USS address = 0 (P512) and USS baud rate=38400 Baud (P511) must be set.

3. Select the desired device in the list of devices.

⊌ ⇔		
File Start Device Project	Messages View	
	🗂 🦳 💥 🛍 Remove 🔷 Up	
Device Disconnect Communication	Paste Copy Cut 🖸 Select all 🗸 Down	
search Start	Edit	
ຍຸ [00] 55xP 1,1kW/230V/1	Save Ctrl+S	
<u>.</u> עו	Save As	
	þ Rename	
8	2 Disconnect F2	
↓	Type of communication	
	Communication	
	Parameter transfer from device F3	
	Parameter transfer to device F4	
ģ	PLC program transfer to device and save	
¶ 	Select motor	
(C	اً: <u>C</u> ontrol F6	
	Remote Control F8	
==	<u>P</u> arametrize F7	
	C Uscilloscope	
	Service Firmware update	
	Best of the second	
	e keset safety password	

Start the firmware update program under "Firmware update" via the context menu that opens via right click.

4. Choose the device type.

1	e Services	DRIVESYSTEMS
Firmwa	Pinopo Dervesystems	n 3.0 Beta iert die enzumrichter.
	Rechie vorbenalien.	
ser. Schnittstelle (COM) COM1 ≺USB Serial Port / FTDI> ↓ ✓ JSS Baudrate 38400 ✓	PRO SK 50xP PRO SK 53xP/55xP PRO TU5 CTR PRO XU5 ETH ON SK 3xxP manuell	Aktualisieren

5. Choose a firmware file.

6. Click on "Update". Before the device firmware update begins, a warning is displayed. Carefully read the warning information and confirm with the "I accept" button.

Warnung		\times
		^
Informationen zur Firmwareaktu	alisierung	
Firmwareaktualisierung sollte mit größter Vorsicht dur Möglichkeit, dass die Firmware nicht 100% kompatib Deshalb ist es möglich, dass Ihre Anwendung nicht fur Firmware führen sie auf ihre eigenes Risiko aus. Im Fi Ihren Händler.	rchgeführt werden. Es besteht die vel zur bestehenden Version ist. nktioniert. Eine Aktualisierung der ehlerfall kontaktieren Sie bitte	
Vor dem Start		
 Sichern Sie Ihre Parameter zuvor mit NORDCON Unterbrechen Sie niemals den Aktualisierungsvor Bitte beachten Sie, dass es riskant ist die Firmwa 	l auf ihren PC. rgang. are zu aktualisieren.	
Seien Sie bitte vorsichtig! Getriebebau NORD GmbH am Gerät, die durch manipulierte Firmware entsteht.	I & Co KG haftet nicht für Schäden	
KEINE GARANTIE!		~
	Ich akzeptiere nich	t

1 Information

If the firmware transfer is interrupted or is not carried out correctly, restart the device. If the device is not found in a bus scan afterwards, the firmware updated program (FirmwareUpd.exe) can also be started manually. The program is located in the main directory of NORDCON.

14.2 Ethernet interface

The following devices support firmware updates via Ethernet:

Device	Version
SK TU3-PNT	V1.4R4 and above
SK TU4-PNT, SK CU4-PNT	V1.4R4 and above
SK TU4-PNS, SK CU4-PNS	Update only possible for the PROFINET IO part

🗋 💥 🖻 Rem

C

14.2.1 How to update the firmware

Perform the following steps:

- 1. Start NORDCON.
- 2. Carry out a device search. The communication type "Ethernet" must be selected.

The firmware update's speed and safety are largely dependent on the system's bus load. Therefore, we recommend a maximal device number of 10.

3. Select the desired device in the list of devices. If you want to update several devices at the same time, select "Ethernet" in the communication list.

50 -			
			- 1 (2)
File Start Device Project	Messages View		File Start Device Project M
	Remove \ \ Up		
Device Disconnect Communication	Paste Copy Cut Diselect all V Down		Device Disconnect Communication
search	Edia		search Stars
Start	Edit		June 1
[00] 55xP 1,1kW/230V/1			E [00] 55xP 1,1kW/230V/1
	Save Ctrl+S		C Save
	Save As		E Save AL.
	_⊉ Rename		⊂⊉ Rename
	& Disconnect F2		3R Disconnect
	↓↑ Type of communication →		↓↑ Type of comm
	Communication		52 Communicatio
	Parameter transfer from device F3		Parameter tran
	Parameter transfer to device F4		Parameter tran
(PLC program transfer to device and save		(PLC program t)
	Select motor		Select motor
	Control F6		O gentrol
	Bemote Control F8		[월리 Bernote Contri
	E Parametrize F7		III Barametrize
	✓ Oscilloscope		Coscilloscope
) PLC ,		O PLC
	Service +	⊖ Firmware update	Service
		Seset password	
		Reset safety password	
	A		

Start the firmware update program under "Firmware update" via the context menu that opens via right click.

4. Firmware update files must be imported into NORDCON once. If no or no newer firmware version has been imported into NORDCON than are available in the devices, the system displays "There are no updates available".

🏽 📽 Firmware Update			-		×
Firmware Update		Auto			~
There are no updates available			Import		
All None					
	Upload	Inst	all	Cance	el

Use the dropdown list above the "Import" button to view the already imported firmware update files. When selecting "Auto", the firmware is always updated to the latest version. As an alternative, select a specific firmware version.

¥″ Fir	mware Update			-		×
Fii	rmware Update	Auto Auto	0 0 2005 P	ROEINE	E villy - N	V 12 100
C	Updates are available	FW	200E P	ROFINE		2_1R0 2_1R1
<u>All</u> I	None					
~	Device: PROFInet (192.168.20.200) Version: V2.1					
	Firmware: Copyright © 2021 NORD Electronic DRIVESYSTEMS GmbH Version: V2.1, R1.0					
	State: Firmware is ready for upload					
~	Device: PROFInet (192.168.20.203) Version: V2.1					
	Firmware: Copyright © 2021 NORD Electronic DRIVESYSTEMS GmbH Version: V2.1, R1.0					
	State: Firmware is ready for upload					
	Upload		Ins	tall	Car	ncel

Use the "Import" button to import the firmware update files into NORDCON. The devices that can be updated to the firmware version are displayed in a list in the firmware update program. Use the checkboxes next to the devices to select the devices for an update.

5. Click on "Upload". Before the device firmware update begins, a warning is displayed. Carefully read the warning information and confirm with the "I accept" button.

6. After a successful upload, the devices switch to the "Firmware can be installed" status and the "Install" button is released.

🕈 Fir	mware Update		-		>
Fii	rmware Update	Auto			
_			Impor	t	
C	Updates are available				
All	None				
~	Device: PROFInet (192.168.20.200) Version: V2.1				
	Firmware: Copyright © 2021 NORD Electronic DRIVESYSTEMS GmbH Version: V2.1, R1.0				
	State: Firmware can be installed				
•	Device: PROFInet (192.168.20.203) Version: V2.1				
	Firmware: Copyright © 2021 NORD Electronic DRIVESYSTEMS GmbH Version: V2.1, R1.0				
	State: Firmware can be installed				
	Upload	In	stall	Can	cel

Click on "Install".

Please make sure that the devices' voltage supply is not interrupted. The installation process is a critical update step that – in cause of failure – may lead to the devices no longer being responsive. In this case, the devices must be returned.

15 Settings

The settings for NORDCON can be adjusted in the "File" menu. The settings are divided into the following categories.

	NORDCON	-	×
$ \in $			
🗅 New	New		
	Data set		
🗁 Open	Erre Data set Create new device data set		
[√] Save	PLC		
	✓ ST program Create new program		
li Save as	i≡ AWL program Create new program		
🖨 Print	Macro		
	Create new macro		
(한) Settings			
? Help			
(i) About NORDCON			

Figure 27: "File" menu

File Edit Device View Extras Help
Ele Edit Device View Extras
Importance Timestamp Message
vwmming 12.11.2010 09:31:37.35 Ups in parameter trafter was cancelled by user! Information 12.11.2010 09:31:27.847 FU-Type in database is different!
Error Protocol Macro
9:35:30 Settings

15.1 User interface

In this category the user can change the settings of the user interface. The following options are available:

NORDCON - Manual

Settings	×
Gui Devices report Control Project Directories Macros Parameter	Gui Language English Use other language for parameters Parameter language English Save windows properties Remote Use device-specific remote windows
	Ok Cancel

Language

With this option the user can choose the language for the interface.

Use other language for parameter setting

With choice of this option the user can choose a different language for the parameter names in the dialog "Parameterisation" in the choice box "Parameter language".

Parameter language

With this option the user can choose a different language for the parameter name in the dialog "Parameterisation". This choice is activated by the option "Use other language for parameter setting".

Save window setting

By activation of this option the window settings like position and size is stored and re-activated after opening again.

Use device-specific remote windows

If this option is activated, for each type of device special remote windows are produced. Otherwise the standard window is used.

15.2 Device report

In the category the user can change the settings of the window "Device overview".

Settings	×
Gui Devices report Control Project Directories Macros Parameter	Devices report Border width 2 Optimal col count Col count 2 Recover info parameters
	Ok Cancel

Border width

With the parameter the user can change the border width of the device display. A value can be set between 0 and 10 pixels. More largely or if smaller value is registered, the largest or smallest value is used automatically.

Optimal number of columns

If this option is selected then the application calculates the optimal number of columns.

Number of columns

With this parameter the user specifies a firm number of columns. The value can be set between 1 and 10. If a larger or smaller value is registered, the largest or smallest value used automatically.

This parameter can be only changed, if the option "optimal number of columns" was not selected.

Recover info parameters

If this option is selected, the adjusted info parameters of the device are stored and restored with a bus scan or a restart of application.

15.3 Control

In the category 6 "Control" the user can change the settings of the "Control" window.

Settings	×
Gui Devices report Control Project Directories Macros Parameter	Control Manage parameter sets individually Evaluate control configuration Read configuration automatically
	Ok Cancel

Manage parameter sets individually

By activation of the option the setting values and actual values are managed individually in the "Control" window.

Evaluate control configuration

The option activated or deactivates the control configuration. With this function being active some functions are released or blocked after checking the configuration. Additionally the names of the parameterised setting value functions or actual value functions are displayed in the window in clear text.

Read configuration automatically

The option activates or deactivates the automatic checking of the configuration. With this function activated the control configuration is checked again after focusing of the window.

15.4 Project

In this heading, the user can specify the path for the project file. Settings such as the interface which is used, bus scan settings, device names, etc. are saved in this file. Old settings can be reloaded by selecting an existing file.

Settings	×
Gui Devices report Control Project Directories Macros Parameter PLC	Project Activate project mode Options "Send all data" Send only enabled parameters Options "Read all data" Delete all records when canceling Delete incomplete records Delete records of non-communication-ready devices
	Ok Cancel

Activate project mode

The project mode can be enabled or disabled with this option. In project mode, the user can freely parameterise the type and number of devices on the bus. The device parameters and the settings for the application are saved in a project file.

Only transfer enabled parameters

If this option is enabled, only parameters which have been enabled by the user are sent to the device with the function "Send all Data". As standard, all parameters are always enabled. Enabling of the parameters can be changed in the parameter editor.

Delete all data records on cancellation

If this option is activated, the data records for all of the devices which are included in the project are deleted when the function "Read all Data" is cancelled.

Delete incomplete data records

If this option is enabled, the data record for a device is deleted if an error occurs during the function "Read all Data".

Delete data records from devices not ready for communication

If this option is enabled, the data record for a device is deleted if there is no communication with the device during execution of the function "Read all Data".

15.5 Directories

In this heading the directories in which the parameter databases, configuration files, macro files and internal databases are located can be set. In order to change one of the paths, the required directory must be highlighted in the list. A new path can be selected by clicking on the "Change" button. The standard directory for each category can be entered with the aid of the "Standard" button.

Settings		X
Gui Devices report Control Project Directories Macros Parameter	Directories Name Databases Customer files	Directory C:\Programme\Nord\NordCON 2.0\Db C:\Dokumente und Einstellungen\All Use Standard Change
		Ok Cancel

Customer files

All customer-specific files, e.g. macros or parameter files are saved in this directory.

Internal databases

These databases are required for the internal execution of the program. The parameter structure for the particular frequency inverter families is saved in these databases.

15.6 Macro editor

In the category you can choose settings of 9 "Macro editor" .

Settings	×
Gui Devices report Control Project Directories Macros Parameter	Macros ■ Execute macro gradually ✓ Open last macro
	Ok Cancel

Macro execution step by step

The option activates or deactivates the macro execution step by step. With this option being activated each macro step must be activated separately (cycle/start).

Open last macro

The option activates or deactivates the function to load the last opened macro.

15.7 Parameter

In the category you can choose settings of the 5 "Parameterisation".

Settings	×
Gui Devices report Control Project Directories Macros Parameter	Parameter ✓ Read parameters automatically after selecting ✓ Display value at text parameter
	Ok Cancel

Read parameter automatically after selection

The option activates or deactivates the automatic reading of a parameter after selecting.

Show also the value with text parameter

The option activates or deactivates the display of numerical value with a text parameter.

15.8 PLC

Delete old log entries before compiling

Is this option enabled, the old log entries are deleted before compiling.

Jump to current breakpoint (debug mode)

Is this option enabled, the line of the current breakpoint is moved into the visual range.

16.1 Errors and information

A text and an error code are displayed for all errors and information

The messages have the following meanings:

No.	Description
100	Impermissible parameter number
101	Parameter valued cannot be changed
102	Parameter limits exceeded
103	Impermissible sub-index
104	No array parameter
105	Description cannot be changed
106	No description available
107	Reception timeout
108	Transmission timeout
109	Received data incorrect
110	Order label unknown
150	Reception timeout gateway
153	Device password protection (P4) is active
154	Safety password protection (P497) is active
155	Order label unknown (gateway)
156	Response label unknown
157	Reception timeout
158	Transmission timeout
159	Reception buffer has faulty data
160	Response and order differ
161	RAM area not active
	The error only occurs if a subsystem is not available. Check if the voltage is correctly connected.

No.	Description
162	Write parameter via TCP disabled (P853)
	Writing of parameters is disabled in the device. Use the parameter P853 to set the access to the parameters.
163	Parameter cannot be changed via Ethernet.
164	Safety password protection (P497) is active.
165	Restart of the safety module required.
200	Error when opening the serial interface!
201	Error when closing the serial interface!
202	First close the previous interface!
203	Interface not open!
204	Communication module settings could not be set. Check whether the present baud rate is supported.
205	Buffer error!
206	Time out setting error!
207	No communication possible!
208	Internal object error!
210	Error writing the file!
211	Telegram cannot be generated!
212	No high-resolution timer found!
213	No device found!
214	Only 16-bit setpoint possible!
215	FI is in operation. Close window?
216	Firmware can only be updated if the device has the address 0!
217	Program to update the firmware cannot be started! Please re-install NORDCON to remedy the problem.
218	Please enter a communication module!
219	Do you want to import the file in the online view?
220	No device can be added at this point!
221	More than 1 device found on the bus. An update may cause problems. Do you wish to continue?
222	Control data will be inconsistent if macros and control windows are used simultaneously. Please close all control windows or the macro editor.

Г

No.	Description
223	Transfer cannot be started because the parameter editor is open! Please close the editor and re-start the function.
224	Online help cannot be found! Please re-install NORDCON to remedy the problem.
225	Device cannot be disconnected because at least one window for the device is open.
226	File cannot be opened. Unknown file format.
227	File cannot be read!
228	Unknown file format!
229	File has been changed by the user!
230	Action cannot be executed because the device is not connected!
231	The settings have been changed. Do you wish to save the changes?
232	Your computer does not support the display of Chinese characters. Display errors may occur!
233	Value cannot be changed to an INT 16!
234	The present version of the device does not support firmware updates via the system bus!
235	The present version of the technology unit does not support firmware updates via the system bus!
236	The device at address 0 does not support firmware updates via the system bus!
237	PLC not registered! Please contact Support (+49 (0)180 500 61 84).
238	Incorrect registration code! Please contact Support (+49 (0)180 500 61 84).
239	Firmware download can only be executed with a baud rate of 38400 baud!
240	Report cannot be printed because no printer is installed!
241	File cannot be found in your system!
242	The current version of the TU3 technology unit does not support firmware updates!
243	No further devices can be added!
244	Project has changed! Do you wish to save the project?
245	Connection to device [x] cannot be established!
246	No PLC program found for device [x]!
247	No Parameter found for device [x]!
248	Project transfer cancelled by user!
249	At least one error has occurred during the project transfer!
250	At least one warning has occurred during the project transfer!
251	Invalid IP address entered!
252	No further devices can be added!
253	File corrupt or has been tampered with!

No.	Description
254	Firmware update not possible via "TCP in USS" mode!
255	The changes require a bus scan! Do you wish to adopt the changes?
256	Project file cannot be found!
257	Please enter a bus extension unit!
258	Not all of the settings could be transferred to the selected bus extension unit? Do you wish to continue?
259	An error has occurred during the writing process!
260	PLC program for device [x] is not correct!
261	No project file has been created! Do you want to save the project now?
262	Entered IP address in use!
263	Directory cannot be found!
264	The text cannot be converted into a byte array!
265	The USS telegram is not correct!
266	The PLC program can only be loaded to the device!
267	Do you wish to overwrite the existing PLC program?
268	The PLC program is secured and can only be loaded to the device!
269	Communication type changed. All devices have been deleted from the list! Do you wish to continue?
270	The Midas.dll is too old. The DLL was overwritten by another application with an older version. Delete the DLL and re-install NORDCON.
271	Midas.dll is not installed. The DLL was deleted by another application. Please reinstall NORDCON.
272	Devices are being updated! Should the process be canceled?
273	The password has been reset and the default values have been loaded in the device. Should all parameters be read?
300	The path for the internal database must be corrected!
301	Incorrect path for the internal database. NORDCON will now be ended
302	Error when opening the databases!
303	Incompatible FI type in the database!
304	Different FI type in the database!
305	Save current database?
306	Database cannot be opened!
307	Impermissible path!
308	Not all parameters could be read! Would you still like to save?
309	Not all parameters have been read yet. Do you still want to save?

No.	Description
310	Please update NORDCON! Correct parameterization is not guaranteed.
311	Printer not installed correctly!
312	Only 1 parameter window is permitted at a time. Display opened window?
313	The parameter window must be closed in order to end the program!
314	The parameter window must be closed in order to execute the device search!
315	A parameter comparison can only be saved as a PDF.
316	The parameter has not been permanently saved in the device. Do you still wish to exit?
317	Start address must not be greater than the end address!
318	Not all i parameters are current. Please execute "Read all".
319	Not all changed values have been transferred!
320	Not all i parameters are selected. Please change the filter!
321	NORDCON does not work correctly. Please reinstall NORDCON!
322	Parameter cannot be found!
323	The parameter value cannot be converted.
324	Parameter P[x] has no parameter set.
327	Not all I/Safety-Parameter known.
328	CRC for I/Safety-parameters could not be calculated.
400	File cannot be loaded because the file version is unknown!
401	File cannot be loaded because the file format is unknown!
402	File has been changed by the user!
403	Error when opening the file!
405	No macro file!
406	Macro list empty!
407	Macro list executed!
408	Jump target not found!
409	Function cannot be executed because the scheduler has been started.
410	Do you wish to save the changes to the macro?
411	File has been changed by the user! Do you wish to open the file?
500	Only load settings?
501	The device types are different! Do you wish to open the file?
502	File cannot be opened because the version of the file format is unknown!

DRIVESYSTEMS

No.	Description
503	File cannot be opened because the file format is unknown!
504	File has been changed by the user! Do you wish to open the file?
505	Changing this setting will delete the current recording! Do you want to continue!
600	Control of the device is restricted or not possible for the following reason: the control word (P509) is not configured for USS!
601	Control of the device is restricted or not possible for the following reason: setpoint source 1 (P510.0) is not configured for USS!
602	Control of the device is restricted or not possible for the following reason: setpoint source 2 (P510.1) is not configured for USS!
603	Control of the device is restricted or not possible for the following reasons: the control word (P509) and setpoint source 1 (P510.0) are not configured for USS!
604	Control of the device is restricted or not possible for the following reasons: the control word (P509) and setpoint source 2 (P510.1) are not configured for USS!
605	Control of the device is restricted or not possible for the following reasons: setpoint sources 1 (P510.0) and 2 (P510.1) are not configured for USS!
606	Control of the device is restricted or not possible for the following reasons: the control word (P509) and setpoint sources 1 (P510.0) and 2 (P510.1) are not configured for USS!
607	Telegram timeout (P513) is not active!
700	Action cannot be executed because the connection to the device is interrupted!
701	Action cannot be executed because access is disabled!
800	Action "Transfer parameters" successfully completed.
801	Errors have occurred during the action "Transfer parameters"!
802	Action "Transfer parameters" has been cancelled by the user!
803	Errors have occurred during the action "Transfer parameters"! Do you wish to save?
804	Action "Transfer parameters" has been cancelled by the user! Do you wish to save?
805	Differences have been detected! Do you wish to view the report?
806	Creation of the report cancelled by the user!
807	Connection to the device will now be re-established! Do you wish to continue?
808	A parameter is not available!
809	Parameter limit exceeded!
810	Parameter limit undershot!
811	Error during import of motor data!
900	Only a maximum of 5 variables can be entered in the observation list!
901	File must be saved before it can be converted. Do you wish to create a new file?
902	File cannot be opened because the file format is unknown!

No.	Description
903	File cannot be read!
904	File has been changed by the user! Do you wish to open the file?
906	PLC program must be saved before programming!
907	The PLC program has been changed! Do you wish to save?
908	The settings have changed! Do you wish to save?
909	PLC format 1.0 is not supported.
910	The PLC program could not be saved!
911	The function of the process variables _142_Pos_Sensor_Abs, _143_Pos_Sensor_Uni and _144_Pos_Sensor_HTL has changed in the SK5xxP device from version 1.3.
912	The check of the PLC program after the transfer cannot be executed. The mains voltage is not supplied.
1100	All data records have been deleted (cancellation by user)!
1101	An incomplete data record for the device has been deleted!
1102	An incomplete data record for the device has been saved!
1103	The data record for a device which is not ready for communication has been deleted.
1104	No parameters have been saved for the device.
1105	Factory settings cannot be loaded!
1106	The parameter number cannot be read (line [x])!
1107	The index cannot be read (line [x])!
1108	The parameter set number cannot be read (line [x])!
1109	Line [x] cannot be read!
1110	The file contains no parameters
1200	Terminal assignment is incompatible on the target device.
	Digital functions for up to eight digital inputs can be configured in the source device. Without an expansion module the target device has six digital inputs. Please check whether the functions in digital inputs 7/8 can be implemented on other inputs and adjust P420 and P475 accordingly. or The input assignment for connecting an HTL rotary encoder is different on the target device (DI2/3 -> DI3/4). Please adjust the hardware connection of the HTL encoder and the parameterisation of the digital inputs 3 and 4 in P420 accordingly.

No.	Description
1201	Evacuation run is not supported by the target device.
	1 Information
	The "Evacuation mode" function is not supported by the target device. Please contact the customer support.
1202	Pulse frequency below the minimum value permissible for the target device.
	(1) Information
	A pulse frequency below 4 kHz was set in the source device. The value for the target device is outside the permissible range. Please adjust the pulse frequency in P504 accordingly.
1203	USS baud rate is not available in the target device.
	1 Information
	A baud rate of 230400 baud or 460800 baud was selected in the source device. These settings are not supported by the target device. Please adjust P511 accordingly.
1204	ProfiBus is not available in the target device.
1205	InterBus is not available in the target device.
1206	DeviceNet is not available in the target device.
1207	Automatic conversion of reserved parameter values is not supported.
	(1) Information
	You have entered a parameter value that was previously without function. The value now corresponds to a function in the target device. The values of the corresponding function remain in the factory setting during conversion in the target device.
1208	Maximum position outside the permissible value range in the target device.
	1 Information
	For rotary axes / turntable applications, a negative overrun point could be set in the target device via P615 (for TTL encoder) or P620 (for HTL encoder). The configuration for such applications with negative position value range is different in the target device. The overrun point can now be set in the target device for a TTL encoder in P620[1] and for a HTL encoder in P620[2] in a range from 0 to 50000 rev. Please adjust parameters P615 and P620 according to your application.

No.	Description
1209	Analogue function of digital input 2 and 3 must be configured manually in the target device.
	1 Information
	Evaluation of pulsed digital signals (analogue function of digital input) can only be carried out in the target device at digital input 3. Please configure the options 81 or 82 in P420[3] for this. The analogue function can then be set in P400[9].
1210	Manual configuration of the Hiperface encoder via parameter P301[3] required in the target device.
1211	Monitoring of a fourth option module is not supported by the target device.
1212	Manual configuration for the CANopen encoder is not supported by the target device.
	(1) Information
	The manual configuration of the CANopen encoder is not supported by the target device. Please check whether an automatic configuration (P604 = 3) is possible.
1214	Converter error
1215	New parameter list cannot be generated.
1216	No suitable converter available.
1217	The parameter list cannot be loaded.
1218	Not all required parameters are set.
1219	No suitable device could be found! The standard device has been used.
1220	Connection of the temperature sensor via dedicated PTC thermistor input on the target device is recommended.
1221	Conversion with the device version less than [x] is to be checked separately!
	1 Information
	The conversion is designed for the devices SK5xxE from version 3.2 and SK540E from version 2.4. Older versions are not fully supported and must be checked separately. The functionality of the conversion may be limited because not all required parameters are available in older versions.
1301	Downloading the firmware is not possible as the access via TCP is not allowed (P853[2]).
1302	Installation is not possible as the access via TCP is not allowed (P853[1]).
1303	Communication error ([x])
1304	Device error ([x])
1305	Unknown or invalid response received from device
1306	Connection was refused
1307	Link connection timeout

No.	Description
1308	File transfer timeout
1309	Invalid response received from device
1310	Synchronization error during data transmission
1311	Device timeout ([x])
1312	Error occurred while verifying the firmware ([x])
1313	Firmware update canceled
1314	Error occurred while evaluating the firmware ([x])
1315	System error
1317	The firmware is faulty ([x]).
1318	During the firmware update the following occurred: [x]
1319	Firmware version are not supported ([x]).

16.2 Abbreviations

•	AE	Current result
•	AIN	Analogue input
•	AOUT	Analogue output
•	AWL	Application list (also IL)
•	COB-ID	Communication Object Identifier
•	DI / DIN	Digital input
•	DO/ DOUT	Digital output
•	E/A or I/O	Input / Output
•	EEPROM	Non-volatile memory
•	EMC	Electromagnetic compatibility
•	FM	Function module
•	FI	Frequency inverter
•	MSW	Main setvalue
•	IL	Instruction List (see also AWL)
•	ISD	Field current (current vector control)
•	LED	Light-emitting diode
•	MC	Motion Control
•	NSW	2nd setpoint, auxiliary setpoint
•	Ρ	Parameter set-dependent parameter, i.e. parameter, which can be assigned different functions or values in each of the 4 parameter sets of the device.
•	P-Box	ParameterBox
•	PDO	Process Data Object
•	PLC	PLC (Programmable Logic Controller)
•	S	Supervisor parameter, i.e. parameter, which is only visible if the correct supervisor code is entered in parameter P003
•	SW	Software version (see parameter P707)
•	СТЖ	Control word
•	STW	Status word

Key word index

В

Back up parameters	33
C	
Comparison report	35
Connect	16
Connection to the frequency inverter	10
Control 16, 38, 39, 40, 2	14, 218
Control and View	25
Сору	15
Copying instructions	61
Creating new instructions	62
Cut	15
Cutting instructions	61
D	
Delete	15
Detailed	38, 40
Device	16
Device report	217
Directories2	14, 220

Е

Edit	15
Error	223
Erste Schritte in NORDCON	10
Exit	13
export	56
Export	13
Extras	18
_	

F

File	13
Filter	34
Firmware update program	202
Firmware update via system bus	205
G	

GUI214

Н

H	
Help	21
HMI	196, 197
How to update the firmware	200
I	
Import	13
Inserting instructions	61
Introduction	9
L	
Language	. 45, 215
load	
Log window	60
Μ	
Macro	57, 221
Macro editor	221
Macro generator	57, 221
Macros	214
Main menu 13, 16, 18, 1	9, 21, 22
Master (USS Anfrage)	64
Measurement	55
Measurement	53
Menu	13, 15
Messages	19
Ν	
New	13
NORDCON	9
NORDCON installieren	10
Notes	223
0	
Open	13
Oszilloskop52, 5	3, 55, 56
Oszilloskop display	52
Oszilloskop Drucken	56
Overview	

Ρ

Parameter	32, 33, 34, 214, 222
Parameter comparison	35
Parameter download	33
Parameter language	45, 215
Parameter Off-line	35
Parameter transfer from de	evice16
Parameter transfer to devi	ce16
Parameter upload from de	vice33
Parameter\:Auto Read	
Parameter\:Edit	
Parametrize	16
Paste	15
PLC	69, 214, 222
ABS	136
ACOS	141
ADD	136
ADD(136
AND	144
AND(144
ANDN	145
ANDN(145
Arithmetical operators	136
ASIN	141
Assignment operator	
ATAN	141
Bit operators	144
Bit-wise access to varial	oles185
BOOL_TO_BYTE	192
Bus setpoints and actua	l values170
BYTE_TO_BOOL	192
BYTE_TO_INT	192
Call-up of function block	s in ST186
CANopen communicatio	on74
CASE	
Comments	
Comparisation operators	s153
configuration	79
ControlBox	73
ControlBox and Parame	terBox175
COS	141

CTD	111
СТU	112
CTUD	113
Data processing via accumulator	72
Data types	182
Data types in ST	185
Debugging	78
DINT_TO_INT	193
DIV	137
DIV(137
Editor	74
Electronic gear unit with flying saw	73, 88
EQ	153
Error messages	194
Errors	180
Evaluation of expressions	187
Exit	190
EXP	142
Extended mathematical operators	141
F_TRIG	114
FB_ FunctionCurve	130
FB_PIDT1	132
FB_ ResetPostion	134
FB_Capture	127
FB_DinCounter	129
FB_DINTToPBOX	123
FB_FlyingSaw	89
FB_Gearing	90
FB_NMT	80
FB_PDOConfig	81
FB_PDOReceive	84
FB_PDOSend	86
FB_ReadTrace	119
FB_STRINGToPBOX	125
FB_Weigh	134
FB_WriteTrace	120
FOR loop	189
Function blocks	79
Function call-ups	184
Functional scope	73
GE	154

	134
Holding points	78
IF	187
Information parameters	175
Input window	76
Inputs and outputs	156
Instruction list (AWL / IL)	182
INT_TO_BYTE	193
INT_TO_DINT	194
JMP	191
JMPC	191
JMPCN	191
Jump marks	184
Jumps	191
Languages	182
LD	152
LDN	152
LE	155
LIMIT	138
Literal	182
LN	143
Loading and storage operators	152
Loading, saving & printing	
LOG	143
LOG	143 155
LOG LT MAX	143 155 138
LOG LT MAX MC_ MoveAbsolute	143 155 138 99
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16	143 155 138 99 109
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32	143 155 138 99 109 109
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control	143 155 138 99 109 109 92
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control	143 155 138 99 109 109 109 92 95
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control.MS MC_Home	143 155 138 99 109 109 92 95 96
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control.MS MC_Home SK5xxP	143 155 138 99 109 109 92 95 96 97
LOGLT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control_MS MC_Home SK5xxP MC_MoveAdditive	143 155 99 99 109 92 95 96 97 91
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control_MS MC_Control_MS MC_Home SK5xxP MC_MoveAdditive MC_MoveRelative	143 155 138 99 109 109 92 95 96 97 101 102
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control.MS MC_Control_MS MC_Home SK5xxP MC_MoveAdditive MC_MoveRelative MC_MoveVelocity	143 155 138 99 109 109 92 95 96 97 101 102 103
LOGLT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control_MS MC_Control_MS MC_Home SK5xxP MC_MoveAdditive MC_MoveRelative MC_MoveVelocity MC_Power	143 155 99 99 109 92 95 96 97 101 102 103 104
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control MC_Control_MS MC_Home SK5xxP MC_Home SK5xxP MC_MoveAdditive MC_MoveRelative MC_MoveVelocity MC_Power MC_Power MC_ReadActualPos	143 155 138 99 109 109 92 95 96 97 101 102 103 104 105
LOG LT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control.MS MC_Control_MS MC_Home SK5xxP MC_Home SK5xxP MC_MoveAdditive MC_MoveRelative MC_MoveRelative MC_MoveVelocity MC_Power MC_ReadActualPos MC_ReadParameter	143 155 138 99 109 109 92 95 96 97 101 102 103 104 105 106
LOGLT MAX MC_ MoveAbsolute MC_ WriteParameter_16 MC_ WriteParameter_32 MC_Control MC_Control MC_Control_MS MC_Home SK5xxP MC_Home SK5xxP MC_MoveAdditive MC_MoveRelative MC_MoveRelative MC_MoveVelocity MC_Power MC_ReadActualPos MC_ReadParameter MC_ReadStatus	143 155 138 99 109 109 92 96 97 101 102 103 104 105 106 107

MC_Stop	109
Memory	71
Messages window	77
MIN	139
MOD	139
MOD(139
Motion Control Lib	73
MUL	140
MUL(140
MUX	140
NE	156
NOT	146
Observation points	78
Operators	136
OR	146
OR(146
ORN	147
ORN(147
Overview visualisation	122
ParameterBox	73
Parameters	181
Process controller	73
Process image	71
Processing values	156
Program task	72
R	149
R_TRIG	114
REPEAT loop	189
Return	187
ROL	148
ROR	148
RS Flip Flop	115
S	149
Setpoint and actual values	165
Setpoint processing	72
SHL	149
SHR	150
SIN	141
Single Step	78
Specification	70
SQRT	144

DRIVESYSTEMS

Key	word	index
-----	------	-------

SR Flip Flop116
ST152
Standard function blocks111
STN153
Structured text (ST)185
SUB141
SUB(141
TAN141
TOF116
TON117
TP118
Transfer PLC program to device77
Type conversion192
Variables and FB declaration75
Visualisation73
Visualisation with ParameterBox122
Watch- and Breakpoint display window76
WHILE loop190
XOR150
XOR(150
XORN151
XORN(151
print56
Print13
Project19, 214, 219
Project file
Properties window57

R
Remote control
Remote Control
Rename 16
Replace
Restore parameters 33
S
Save
Save and restore
Save as 13
Select all
Settings 18, 45, 214, 215, 219
Standard
Start sequence
т
Toolbars 19
U
Über NORDCON9
Undo15
Undocking 22
Up15
USS Anfrage 64, 66
USS Antwort 64, 67
v
View 19, 32
w
Window variables57

Headquarters Getriebebau NORD GmbH & Co. KG Getriebebau-Nord-Str. 1 22941 Bargteheide, Deutschland T: +49 45 32 / 289 0 F: +49 45 32 / 289 22 53 info@nord.com